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Abstract

This MSc project deals with the translation process of machine-generated
proofs to human readable English text. The implementation is based on the
theorem prover Minlog. Minlog is an interactive proof checker written in
Scheme. We describe the development of a Minlog submodule which pro-
cesses the internal representation of the finished proof and outputs a human
readable description of it, in English sentences. Since the final goal is the
direct inclusion of this output into scientific documents, the suggested target
format is LATEX. A prototype for this submodule already exists, it works
however, only for previous versions of Minlog which are now obsolete, and
the target format is generic TEX. Our aim is to express the proof in an ac-
ceptable manner and at the same time we explore several strategies which
make the resulting text more natural for the human reader. Possible exten-
sions to the project include the output to other data representation formats
such as the emerging XML standard.
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Chapter 1

Introduction

This document is submitted as a partial fulfilment of the Master of Science in
Computing and Software Technology 2003/2004 at the University of Wales
Swansea. It contains the MSc project dissertation which counts as the second
part of the MSc course. The first part consists of the taught modules which
took place during the academic year 2003/2004.

In summary the project described is the development of a submodule, of
the Minlog interactive proof checker, which is responsible for transforming
the mathematical proof from the Minlog specific syntax to a human readable
form in the LATEX typesetting system.

1.1 The importance of formal proofs

A subset of all the sentences that surround us, are statements which can be
either true or false. Examples:

1. John has a red hat.

2. 1 + 1 = 2.

3. If I have time, I will go to the cinema.

4. Mary bought today 4 apples and also sent 2 letters by post.

5. If for all natural numbers n we compute p(n) = n2 + n + 41, then p(n
is a prime number[MN02].

6. Every map can be coloured with 4 colours so that adjacent regions have
different colours. (the four colour theorem).

7



CHAPTER 1. INTRODUCTION 8

These statements are called propositions. Some propositions are easy to
verify. We can ask John if he has a red hat or not. Even if he has a hat, but
with green colour the proposition will be false. The proposition will be true
only if John actually has a red hat1.

Some propositions like number 2 are not true on their own, but rather we
have agreed on their truth. We have agreed that 1 + 1 is 2 in order to have
common mathematical foundations. Everyone who uses these mathematical
symbols with the same (usual) meaning will also find this proposition true.
But there is no reason why someone could not use the same symbols with dif-
ferent meanings and declare that 1+1 = 3. It is all a matter of interpretation
and the way we choose to understand what we see.

Some propositions like number 3 and 4 are composite. They consist
themselves of simple propositions. The truth of the whole sentence depends
on whether the individual propositions are true or false.

We are more interested in propositions like number 5 and 6. These are
propositions which need some additional thought before one can claim that
they are true or false. These are the kind of propositions which need a proof.

A proof is a formal process which can convince someone that a proposition
is true (or false). A proof can be long or short, easy or difficult, but the key
point is that it has to be clear, precise and correct[MN02]. Correctness is
the primary goal and sometimes it is easy to make mistakes. For example if
we use sampling we could claim that proposition 5 is true since we tried it
for the first 10 natural numbers and p(n) is indeed prime. The proposition
is actually false because for n = 40 the result is not a prime number.

The safe approach is to formalise the way propositions are expressed
and decide using mathematical arguments on the correctness of a proof.
By formalising proofs we can avoid logical gaps or inaccuracies (“everybody
knows that”, “it is obvious that”) that present common traps for humans.
With the invention of computers we can actually shift this responsibility to
the machine. A program running on a machine can check all steps of a proof
easily without getting tired or bored. Repetition is a particular skill where
computers really have the advantage over humans.

Using computers as problem solvers has revolutionised the way we deal
with mathematical proofs. Researchers have started using computers for
proofs that no human would actually try to validate. Unfortunately the
resulting proofs are very complicated and can only be verified (again) by
computers. Humans have to trust the machines about the correctness of
these proofs. The main problems are:

• For a computer-generated proof to be correct, the computer must also

1He can also have other hats with different colours.
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function correctly.

• For a computer-generated proof to be useful to humans, it must be
readable by them.

There is a large debate about these topics. For example a proof of the
four colour theorem was so complicated that a large part of it could only be
checked (and understood) by computers. And even then a small part of it
still had to be checked manually by humans which was a very tedious proce-
dure. Humans are interested in a proof that they can understand themselves
[RSST96].

A good solution is to leave the computation process to the machine, but
provide some kind of facilities which convert the raw mechanical form of the
proof into a legible expression of it (English text). This facility is what this
project is all about. The proof checker (machine representation of proofs) is
the Minlog system, and the program we develop is a special software module
which outputs a formal Minlog proof into English text.

The next two sections focus on the Minlog system. For a discussion of why
mathematical proofs are important to Computer Science please see section
1.4.

1.2 The Minlog system

Minlog is an interactive proof system[MINLOG]. It was originally developed
by Helmut Schwichtenberg in the University of Munich but many other re-
searchers from the logic group of the department[LOGIK] have contributed
either code, or documentation on the usage of the system.

Apart from the full manual, there is also a tutorial[CRO4] and a command
reference of all the Minlog commands[MREF]. Minlog is written in the func-
tional language Scheme. It can run on any implementation of Scheme which
follows the revised report 5 [RRS5], but the preferred Scheme environment
is the Petite Scheme from Cadence Research systems[CHEZ6]. Since Petite
is cross-platform (Digital Unix/HP-UX/Linux/Windows/AIX/Solaris/IRIX)
Minlog can run equally well in the respective platforms.

More information on Minlog can be found in section 3.

1.3 Motivation

There are three versions of Minlog at the moment. The latest stable one is
Minlog3 and most documentation refers to this. There is the development
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version of this named as Minlog3i, and finally there is the latest version of
Minlog named as Minlog4 which is not completely backwards compatible
with the previous versions.

The last stable version of Minlog (3) included a texoutput module which
can be used to export the finished proof of a problem into a TEX file. This
Tex file along with a small TEX macro file specifically designed for Minlog
could be processed by common TEX tools and utilities to produce a hu-
man readable description of the proof (in English) in various output formats
(HTML/ps/pdf) that TEX supports. Figure 1.1 shows an overview of the
full system.

This module is also present in the development version (3i) and is even
regarded as a submodule of Minlog rather than an accompanying utility.

Many things changed though, when Minlog 4 appeared. Minlog 4 is not
just the next version of Minlog but large parts of the system have been com-
pletely rewritten. Unfortunately this means the the old texoutput module is
now obsolete and needs to be ported to this new version.

So the goals of the MSc project are:

• to port the texoutput module to Minlog 4.

• to extend the module with additional functionality.

• to support the more user friendly LATEX output instead of the plain
TEX.

The next section explains why we need a proof checker program in the
first place, and how formal mathematical proofs can be used in real world
problems.

1.4 Conceptual background

Traditionally the technology press is dominated by commercial programming
languages and operating systems news. The hot topic of our days are the
so called “Web Services” along with the lingua franca of the Internet XML.
The spotlights fall on the two major competing technologies which aim to
make Internet programming easier and more robust. The well established
Java technology (from Sun Microsystems) is the first option, while the .NET
framework (from Microsoft Corporation) represents the latest approach for
web applications that run on the Internet.

These systems however are destined to run on non-critical situations
where an incorrect implementation is not fatal. Any errors in such applica-
tions can at best prevent the users from accessing the (commercial) service,
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Figure 1.1: System overview
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and in the worst case they can compromise the security of the system itself.
During the development of such systems the design goals are usually ease of
use, painless deployment, efficient integration and even backwards compati-
bility. Correctness is assumed after extensive testing sessions which of course
can reveal mistakes but cannot prove the complete absence of them, not to
mention the fact that it is hard to develop test cases for all possible aspects
of the system[BU01]. If an error does appear after the deployment of the sys-
tem, it is fixed in the next version of the system and after the re-deployment
of the code the system is assumed to be “correct” again.

There are other systems however, (mostly unknown to the public) where
correctness is the ultimate goal and any miscalculations are simply unac-
ceptable. Due to the nature of these systems (mission critical), correctness is
the essential feature of the controlling programs. Such systems are installed
in nuclear reactors, avionics electronics, hospitals, military installations and
even cars. Obviously, errors in these areas can result in the loss of human
life. The literature is abundant with real accidents that have been attributed
to software errors.

There are even systems (usually running in embedded microprocessors)
which are hard real-time, meaning that their response under certain situa-
tions must be always correct and on time. This means that additional timing
restrictions apply to the function of the system. For example the computer
logic behind the electronic ABS subsystem of a car must be correct and at the
same time able to provide prompt results according to the input parameters.

Testing a system thoroughly does not make it correct. A great deal of
software errors are disguised during the testing sessions and become visible
only after the system has been installed in the working environment. Most
commercial solutions advertise the correctness of the respective programs
using the Object Oriented Programming tag. Object oriented languages
which constitute a major breakthrough in software development are based
on the idea of objects. A program is essentially a set of objects and the
control flow takes the form of message passing between the interconnected
objects. Correctness of programs is based on the fact that a program which
relies on well-tested smaller subcomponents is presumably free of errors itself.
See figure 1.2.

This approach is inherently flawed since well tested components are not
guaranteed to be correct in all the possible situations that a system can be
deployed. Also as more components are added to a system, the increasing
entropy will make management and maintenance more difficult, allowing for
more errors on the part of the programmers who perform the integration.
Finally, imperative (procedural and object oriented languages) have noto-
riously complicated syntax, making programs even more prone to software
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Figure 1.2: The Object Oriented Programming approach

errors by humans. The shortcomings of imperative languages and their ef-
fects on programming have been criticised already by researchers for some
time now [BAC78]. Object oriented languages have achieved a lot, but com-
puter scientists should always look for the next silver bullet[BRO87]. And
perhaps the next silver bullet can be found in formal program verification
and automatic programming.

Functional languages take a different approach to correctness. Functional
programs are meant to be deterministic, producing always the same output
for the same input without relying on the executing environment. Function-
ality is achieved through expression evaluation instead of side effects as is
the usual case with imperative languages. Functional programming allows
essentially the programmer to argue that his/her program is mathematically
correct instead of relying on extensive testing. A common design pattern
used in functional programming for example is mathematical induction. The
functional program includes code only for the base case and the induction
step and it will automatically work correctly for every possible case which can
be proved by the induction hypothesis. Functional languages are inherently
based on mathematical concepts, since they are a high level abstraction of
the λ− calculus introduced by Alonzo Church[CHU41]. Figure 1.3 outlines
the idea.

It is possible however to extend this approach. Instead of constructing a
program and then trying to use mathematical methods to prove its correct-
ness, we could do the exact opposite. Extract the program itself from the
mathematical proof in the first place! This is the foundation of the proofs-
as-programs approach. Using this idea for software development results in
programs which are correct by definition. Figure 1.4 shows the process.

Minlog is a system developed to support interactive proofs, and it is
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Figure 1.3: The functional approach

Figure 1.4: Proofs as programs
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centered around the idea of extracting automatically programs (algorithms)
from the resulting proofs. Currently the development and usage of Minlog
is aimed at researchers and scientists mainly. It is for this reason that a
TEX output module which outputs proof in a format easily embeddable in
scientific documents is absolutely essential. The TEX typesetting system is
the de-facto system for producing professional looking scientific papers and
it is the natural choice for the target format of the Minlog output module
which is described in this document (in its friendliest version of LATEX).

It is worth mentioning on a side note, that even in the commercial world
some companies have realised that imperative languages are not always the
perfect solution for a problem. The most promising initiative is the launch
of the F# language[FSHARP] from Microsoft. F# is a functional language,
but it is hosted in the .NET framework along with C++, C# and Visual
Basic .NET all of which are traditional imperative languages.2

1.5 Project plan

The project involves three different technologies/areas which are blended
together for the final program.

• The Minlog system.

• The Scheme programming language which hosts Minlog.

• The LATEX syntax rules.

To tackle the problem the following steps were taken:

1. Acquired a working knowledge of Scheme.

2. Acquired a working knowledge of the logical calculus that powers the
Minlog system.

3. Studied the internal structure of the Minlog system.

4. Studied the original texoutput module for Minlog.

5. Developed a similar module from scratch for Minlog 4.

6. Integrated several ideas from the original texoutput module.

2Additionally, some of the “new features” of both virtual machines, like garbage col-
lection and lack of pointers are native characteristics of functional languages. . .
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7. Refined the output of the module to LATEX instead of plain TEX.

8. Implemented several extensions to the module and restructured it for
easy future maintenance.

9. Assessed other output formats used for document processing such as
XML files, which will allow the immediate usage of all available XML
processing tools.

1.6 Related work

Minlog is not the only proof assistant. Other well known similar systems
include:

• Isabelle[ISA] at University of Cambridge.

• Coq[COQ] at I.N.R.I.A.

• Nu/PRL[NUPRL] at Cornell University.

• Agda[AGDA] at Chalmers University of Technology.

Since there is already a prototype texoutput module for Minlog the best
place to start is by extending this code, instead of dealing with similar so-
lutions for other systems. Additionally Minlog is rather small compared to
other interactive proof checkers, which have more generic goals instead of con-
centrating on the proof-as-programs concept. The major difference however,
is that the internal proof representation in Minlog is just a set of λ− terms
which can be “unrolled” and provide a complete history on the state of proof
and the transformations that have been applied so far. This concept (com-
monly known as the Curry-Howard correspondence) is described in section
3.3.



Chapter 2

On Scheme

Scheme is one of the many dialects of Lisp. Lisp[MAEHL62] is a very old
language developed around 1960 which had a great impact in Computer Sci-
ence and became very popular for Artificial Intelligence applications among
the research community. The name stands for “List processing” and it was
the first language which acted as a high level abstraction of the λ− calculus.
It was not purely functional however, since many imperative constructs were
added as the language evolved.

Lisp spawned numerous dialects and of course affected the creation of
other functional languages as well. What is so special about Scheme (apart
from the fact that it has survived for the last 30 years) is the clean and
elegant style of the language. Instead of defining an extensive wealth of core
functions, Scheme follows a more minimalistic approach. It just defines a
powerful and flexible yet small subset of required functionality, allowing the
programmer to extend the language as needed for each individual case.

Table 2.1 taken from[SF89] deserves some attention. It lists some pro-
gramming languages along with the pages of the respective defining standard.

Of course some of the programming languages included are now obso-
lete. It is worth comparing however the numbers for Scheme and the still
dominant C language. Common Lisp is at the top of the table with an im-
pressive number, implying very complex semantics. Naturally these numbers
are not absolute and under no circumstances the size of the standard of a
programming language shows the quality/expressiveness/performance of the
language.

It shows however, that Scheme and Common Lisp have taken opposite
directions with the former promoting clean syntax and the latter providing
a rich programming tool set for the user. Even now (2004) the latest revised
report for Scheme[RRS5] accounts to 51 pages.

17
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Language Pages of Standard
Common LISP 1000 or more
COBOL 810
ATLAS 790
Fortran 77 430
PL/I 420
BASIC 360
ADA 340
Fortran 8x 300
C 220
Pascal 120
DIBOL about 90
Scheme about 50

Table 2.1: Standards of various programming languages

2.1 History of Scheme

Scheme started out as an experiment around 1975. Guy Steele and Ger-
ald Jay Sussman created a lexically scoped dialect of Lisp in order to study
what would later be called as “tail-recursion”. They considered their creation
a “toy implementation”[SG93] and they called it Schemer in the tradition
of other Artificial Intelligence languages with similar names (Planner, Con-
niver). The operating system that they were using (ITS) had a limit of 6
characters for file names and so the name was truncated to “Scheme”.

With Scheme they discovered that it was possible to create calling func-
tions which did not perform any processing on the results on the returned
value and therefore the system did not need to keep resources for them[HAN90].
This allowed for recursive functions which occupied a fixed amount of mem-
ory in the process stack instead of filling it continuesly at every recursion
step. With the results of this discovery[STE77] Steele argued that this tech-
nique permits unrestricted procedure calls which at the time were considered
“expensive” compared to the imperative GOTO statement. The first report
of Scheme was also published this period.

Steele became more involved with Common Lisp and the Scheme di-
alect was next implemented by Jonathan Rees, Norman Adams and others.
They designed a Scheme dialect called “T”[AR82]. T added to the predi-
cate functions the question mark (null?, number?) and tagged “destructive”
functions with the exclamation mark (append!, set!), conventions which are
present even today[SG93]. Also a compiler for T called “Orbit”[KRA86] was
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developed.
Scheme became eventually an IEEE standard[SCH91]. Less informal

Scheme definitions are outlined in the various “reports” with the latest one
being the fifth[RRS5] published in 1998.

Various Scheme implementations have existed. Apart from those devel-
oped in major Universities (e.g. MIT) the most well-known commercial ver-
sions include PC-Scheme[BJ86] and Petite Scheme from Cadence Research
Systems[CHEZ6] which is also the one that Minlog is based on.

2.2 The flexibility of Scheme

At this point we could start enumerating the advantages of the functional
programming approach[HUG89], or even analysing some special Scheme char-
acteristics (e.g. continuations). We prefer however, to focus more on the
versatility of Scheme as a programming language and the fact that one can
program easily in mixed imperative/functional style.

Having the ability to program in mixed style with Scheme means that:

• Seasoned imperative programmers can start using Scheme gradually
moving from imperative to functional constructs.

• Experienced Scheme programmers can use different styles depending
on the problem, having the best of both approaches at their disposal.

It is a common misconception that imperative and functional styles do
not match[HUD89]. Scheme provides us essentially with the proof that this
is just a myth which is commonly found among most programmers.

Note: Unless otherwise stated all imperative code segments are in Java
and all functional ones in Scheme.

2.2.1 Procedural programming style

First we will briefly mention that Scheme supports the do, case(switch), for-each

constructs which are similar to those found in imperative languages. For
example a function which adds integers from zero to its argument would
normally be written in imperative style:

public int sumvalues(int n)

{

int i=0;

int sum=0;
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while(i<=n)

{

sum=sum + i;

i++;

}

return sum;

}

// sumvalues(4) => 10

The functional approach for the same function would normally involve
recursion:

(define (sumvalues n)

(if (= n 0) 0 (+ n (sumvalues (- n 1)))))

;(sumvalues 4) => 10

Apart from the smaller size of the code it is interesting to note that the
addition is made backwards starting from n and reaching zero. However by
using the do Scheme construct the same program could be transformed to

(define (sumvalues2 n)

(do ((sum 0) (i 0 (+ i 1)))

((> i n) sum)

(set! sum (+ sum i))))

;(sumvalues2 4) => 10

Again there is a sum variable which accumulates the additions and an i

variable used as an iterator. The code also makes use of the “destructive”
set! method which performs assignment.

The second imperative construct of Scheme that is interesting is the begin
construct which allows for sequencing. The following code segment demon-
strates its use:

(define (test)

(define x 5)

(define y 3)

(begin (set! x 7)

(set! y (+ y x))

(display "The value of y is ")
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(display y)

(newline)))

;(test) => "The value of y is 10"

This implements the respective imperative test function:

public void test()

{

int x=5;

int y=3;

x=7;

y=x+y;

System.out.print("The value of y is ");

System.out.println(y);

}

//test() => "The value of y is 10"

2.2.2 Object oriented programming style

The most basic approach which really just makes Scheme mimic object
oriented functionality is to create multiple functions which act as muta-
tors/accessors to a long list which holds all the private fields of an “object”.
For example an object representing a student could be written in Java as:

public class student

{

private String name;

private int number;

public student(String name, int number)

{

this.name=name;

this.number=number;

}

public String getName()

{

return name;

}

public int getNumber()

{
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return number;

}

}

//student me=new student("Kostis",302440); => me

//me.getName(); => "Kostis"

//me.getNumber(); => 302440

The mutators have been left out for brevity but their structure should be
obvious. Since we have only two private fields a pair is enough for internal
storage in the functional version:

(define (create-student name number)

(cons name number))

(define (getname student)

(car student))

(define (getnumber student)

(cdr student))

;(define me (create-student "Kostis" 302440)) => me

;(getname me) => "Kostis"

;(getnumber me) => 302440

The mutators have not been included for brevity again. They could be
easily implemented however with set!. In more complex cases the internal
data structure can be a simple list, a circular list, a binary tree, or any other
arbitrary structure that can be created by primitive Scheme functions.

The previous technique is really “pseudo object oriented”. A more ad-
vanced approach would be to truly have the data along with the methods
that operate on it in one single construct. The following example is taken
from [AR88] without any modifications.

(define (make-simple-cell value)

(lambda (selector)

(cond ((eq? selector ’fetch)

(lambda () value))

((eq? selector ’store!)

(lambda (new-value)

(set! value new-value)))

((eq? selector ’cell?)
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(lambda () #t))

(else not-handled))))

;(define a-cell (make-simple-cell 13))

;((a-cell ’fetch)) => 13

;((a-cell ’store!) 21)

;((a-cell ’fetch)) => 21

;((a-cell ’cell?)) => true

;((a-cell ’foo)) => error

The make-simple-cell construct demonstrates the more advanced ob-
ject oriented capabilities of Scheme. The same example in Java would be:

public class simpleCell

{

private int value;

public simpleCell(int value)

{

this.value=value;

}

public int fetch()

{

return value;

}

public void store(int value)

{

this.value=value;

}

public boolean isCell()

{

return true;

}

}

//simpleCell acell=new simpleCell(13);

//acell.fetch(); => 13

//acell.store(21);

//acell.fetch(); => 21

//acell.isCell(); => true

We have barely scratched this topic (especially object oriented style) but
it should be clear now that Scheme can accommodate multiple programming
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styles and is not limited to only one of them.

2.3 Scheme today

In summary, Scheme is very versatile language. As with any programming
language it is not a universal solution for all types of problems. It is still
evolving however and certainly “it has served the community well”[RAM94].
Scheme has been used in the past for as diverse projects as compiler construc-
tion or even controlling robots[RD92]. Apart from the success Scheme enjoys
within the research community, it is also used in “real world” projects. More
recent (and more impressive) Scheme uses include the language of choice for
defining mail filtering rules for the Evolution personal information manage-
ment suite[XIM], and even the plug-in system for the most popular open-
source image manipulation program[GIMP].

Although Minlog is at first glance a complicated system dealing with very
high level logic, it is essentially just a set of Scheme source files demonstrating
again the power and expressiveness of Scheme.



Chapter 3

Overview of the Minlog system

“What a calculator is to number Theory, Minlog is to proof theory”. This is
how Martin Ruckert described Minlog in the previous version of the Minlog
tutorial (which is now superseded by[CRO4]).

At this point we will attempt to give a brief overview of the Minlog
system trying to avoid implementation details and too formal definitions. At
a very high level Minlog is an interactive prover focusing on the following
goals[BBSSZ98]:

• The ability to construct proofs for given problems.

• The successful program extraction (algorithms) from the finished proofs.

• Partial or even full automation of the process. Minlog supports apart
from interactive proofs, automatic search of (sub)proofs.

A more formal definition of the idea behind the proofs-as-programs con-
cept using Minlog would be[BBSSZ98]:

1. Description of the required program A and specification of the output
for the given input (A[input, output]).

2. Construction of proof M such that ∀x∃yA[x, y], meaning that for every
input x of the program there should be an appropriate output y which
satisfies mathematically the A specification.

3. Extraction of algorithm M which by definition implements A[x, M(x)],
meaning that it calculates the “correct” answer M(x) = y for every
input x.

25
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Minlog is in active development since 1990. Initial programming was done
by Helmut Schwichtenberg but as the popularity of the system increased
more researchers started to contribute to the project. The growth of Minlog
is demonstrated at table 3.1 which shows the relative size of the last versions
available. (We have not included statistics for documentation and examples
included in the Minlog distribution)

Version Lines of code Source files Directories
Minlog 3 16852 4 2
Minlog 3i 23161 13 2
Minlog 4 42204 38 4

Table 3.1: Minlog evolution

3.1 Introduction to Minlog Logic

At the most basic level Minlog implements minimal logic. The formulas that
Minlog can accept as input can include the well known ∧,→,∀,∃∗. Table
3.2 has the details. The third column shows the “external representation”
of each symbol meaning how each symbol should be typed so that it can be
successfully parsed by Minlog’s parse-formula function or how it is printed
by Minlog itself to the user. For the full formal syntax the reader is referenced
to [BBSSZ98].

Symbol Meaning Minlog form
> true T

⊥ false bot

∧ Conjunction &

→ Implication ->

∀ For all all

∃∗ Exists ex

¬A Negation A -> bot

Table 3.2: Minimal logic for Minlog

For each of the logic connectives, Minlog holds an introduction rule which
can be used to insert the respective symbol in the current stage of the
proof, and an elimination rule which can be used under the appropriate
circumstances in order to remove the symbol (and hopefully simplify the
expression).[BU01]
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Conjunction Introduction
P Q

P ∧Q
∧+ (3.1)

Conjunction Elimination
P ∧Q

P
∧−l

P ∧Q

Q
∧−r (3.2)

There are two symmetrical conjunction elimination rules depending on
whether we want to keep the left or right part of the connective.

Implication Introduction

[P ]
...
Q

P → Q
→+ (3.3)

the bracketed assumption P is discarded.

Implication Elimination
P → Q P

Q
→− (3.4)

For all Introduction
P (x)

∀xP (x)
∀+ (3.5)

provided that x is not free in any assumption on which the proof of P (x)
depends. This rule essentially dictates that if know that P (x) is true for
some x and we haven’t chosen any particular x (it is completely arbitrary)
then we can assume that P (x) holds for all similar to x.

For all Elimination
∀xP (x)

P (t)
∀− (3.6)

If we know that for all x P (x) is true, we can select one of them (named
t) and we know that P (t) is also true.

Exists Introduction
P (t)

∃∗xP (x)
∃∗+ (3.7)

Since we already have a t which satisfies P we can assume that there
exists one x such that P (x) holds, and this x is t which is already known to
have this attribute.

Exists Elimination
∃∗xP (x) ∀x(P (x) → Q)

Q
∃∗− (3.8)

provided x is not free in Q. In both cases the symbol refers to the “strong”
existential quantifier and not the “weak” (classical) existential quantifier.
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The latter is just another way of expressing ¬∀x¬P (x) while the former
truly notifies that one can extract a t term which satisfies P (x).

Of course this is not an exhaustive list of Minlog’s logic capabilities. For
example Minlog supports some predefined rules/proofs such as the stability
rule:

Reductio-ad-absurdum: ¬¬A → A (3.9)

and the negation axiom

Ex-Falso-Quodlibet: ⊥ → A (3.10)

which dictates that we can conclude any A from false. Most recent ver-
sions of Minlog have more advanced features. A new addition for example
involves the ability to use mathematical induction with arbitrary datatypes
(other than natural numbers).

3.2 A sample Minlog session

What follows is a sample interactive Minlog session which proves a trivial
formula involving conjunction. The example is taken from[CRO4].We want
to prove:

A ∧B → B ∧ A

Every line which starts with > is typed from the user. All the other lines
are Minlog messages.

>(add-predconst-name "A" "B" (make-arity))

; ok, predicate constant A: (arity) added

; ok, predicate constant B: (arity) added

We have just defined the A and B as null-ary predicate constants, that is
propositional constants. It could also be Q and R, p1 and p2 or anything
else.

>(set-goal (pf "(A & B) -> (B & A)"))

; ?_1: A & B -> B & A

Here we defined what we want to prove. The pf function stands for “parse-
formula”. Minlog has printed the formula and has assigned also number 1 to
it.
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>(assume 1)

; ok, we now have the new goal

; ?_2: B & A from

; 1:A & B

Now we command Minlog to break the implication into the left part (assump-
tion) and assign it the number 1. The right part of the implication now is
expression number 2 and must be derived from the left part (number 1). This
command is actually the implication introduction rule applied backwards.

>(split)

; ok, we have the new goals

; ?_4: A from

; 1:A & B

; ?_3: B from

; 1:A & B

Split is a special Minlog command which expects the current goal to have
conjunction (as we have now). It splits the conjunction into two separate
parts. It is essentially the conjunction introduction rule applied backwards.
Therefore the old expression with number 2 was split now into 4 and 3 which
must be derived from the unchanged 1.

>(use 1)

; ok, ?_3 is proved. The active goal now is

; ?_4: A from

; 1: A & B

>(use 1)

; ok, ?_4 is proved. Proof finished.

Since the example is very trivial the proof is very short. Both expressions
(number 3 and 4) can be derived from 1 since they are just the left and right
parts of the conjunction. Typing the use command along with the number
of the expression that we wish to use accomplishes the required effect and
the proof is finished.

3.2.1 Automatic proof search

Since the example we have selected is very basic we can also demonstrate
easily the automatic proof search feature



CHAPTER 3. OVERVIEW OF THE MINLOG SYSTEM 30

>(set-goal (pf "(A & B) -> (B & A)"))

; ?_1: A & B -> B & A

>(search)

; ok, ?_1 is proved by minimal quantifier logic. Proof finished.

>(display-proof)

; ...A & B by assumption u17

; ..B by and elim right

; ...A & B by assumption u17

; ..A by and elim left

; .B & A by and intro

; A & B -> B & A by imp intro u17

After defining the same goal again we instruct Minlog to attempt an
automatic proof search. The search is successful. With the final command
we query Minlog for the final proof. It prints out (properly indented by dots)
the stages of the proof. For each step it mentions what rule it has used and
whether it was an elimination (elim) or an introduction (intro). The u17
string is just an automatic internal name that Minlog has assigned to the
assumption.

3.3 Storage of proofs

The introduction of λ-calculus had an impact on several aspects of science.
There is a great amount of literature revolving around λ-calculus. A lot of
scientific papers have emerged examining existing scientific fields and their
connection to the λ-calculus.

The previous chapter showed the effect on programming languages. We
already mentioned that a functional programming language can be thought
as a high level abstraction of λ-calculus. Another interesting aspect of the
topic, is λ-calculus and logic theory. We will also explain how this concept
applies to Minlog.

It turns out that there is an analogy between natural deduction proofs
and the λ-calculus concept. This analogy is known as the Curry-Howard
correspondence. Figure 3.3 shows the principle behind this theory. More
details can be found in [SCHW99].

The key point in our case, is that Minlog actually uses the Curry-Howard
correspondence to store internally the proof process. A simple implemen-
tation would involve a big table of the individual transformations and any
associated formulas (before and after). Minlog stores instead each proof
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Derivation/Transformation λ-calculus
Assumption λ-term

Conjunction introduction λ-pairing
Conjunction elimination (left) λ-projection

Conjunction elimination (right) λ-projection
For all introduction λ-abstraction
For all elimination λ-application

Implication introduction λ-abstraction
Implication elimination λ-application

Table 3.3: Natural deduction and λ-calculus

(partial or finished) as a single λ-term which is then used for all Minlog
operations.

To print out the λ-term of the proof, we can use the display-proof-expr
function. Note: The cons, cdr, car keywords denote λ-pairing and the two λ-
projections. This is a convention followed by Minlog. These are not Scheme
functions!. For the last example this would give us:

> (display-proof-expr)

(lambda (u17) (cons (cdr u17) (car u17)))

We can easily see how this term can be unrolled in order to get the history
of the proof. Starting from the left we find a λ-abstraction. This was the
(assume 1) Minlog command and u17 is the assumption that was created
(A → B). Next we have a λ-pairing (the cons keyword) so we know that
this term is formed by two other terms. We informed Minlog about this
when we used the (split) command. Finally we have the two terms which
are connected. These are the left and right projections of term u17 (which
is the assumption introduced in the first step). These map to A and B as
extracted from the assumption. The respective Minlog commands are the
last two (use 1) steps.

This representation of proofs will become very important during the mod-
ule implementation phase. The details will be explored in the next chapters.
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Specification
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Chapter 4

Project Objectives

The role of the texoutput module is very simple in principle. Since Minlog
is written in Scheme which is a LISP dialect (= LISt Processing), all ma-
jor Minlog structures are actually long nested lists. The same is true for
every possible aspect of the Minlog system. Formulas for example are also
represented as lists.

So the objective of our module is the processing of the central Scheme
list, which represents the proof process, into a LATEX text file with English
sentences. This resembles a bit the function of a special compiler with input
the mathematical representation of a proof and output the respective English
expression. In this case however, we are not developing a separate software
program which would parse the input individually. Instead we access the
input structure via the published Minlog functions, and the code itself is
hosted in the Minlog environment rather than running stand-alone. See
figure 4.1.

This central Minlog list is calculated by the (current-proof) function
and as the name suggests it contains all possible information of a finished
(or even partial) proof. To successfully form English sentences from this
structure we need to process the list and remove unwanted parts or modify
the existing ones to fit our needs.

There are several architectural questions that need to be answered such as
the order of the processing actions or even whether only one or more parsing
phases are needed. But without even starting the implementation we need
to focus on the topic of extensibility.

33
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Figure 4.1: Expressing the proof structure

4.1 Abstraction and integration

The original texoutput module for Minlog3/3i was an impressive piece of
software. It supported (among other features):

• Translation of minimal logic proofs (→,∧,∀ e.t.c) .

• Advanced constructs (global assumptions, axioms e.t.c).

• Induction proofs.

• Deeply nested subproofs (using indented bullet points in the output
file).

• Presentation options with numerous “flags” allowing the user multiple
levels of verbosity.

• Facilities for the presentation of user-defined Minlog constructs.

To achieve all this functionality the code was not an “add-on” in the
strict sense. The old Minlog module was actually plugged-in so deep into the
core Minlog system that it depended heavily on the Minlog internals. In this
sense the module was part of Minlog rather that a simple extension.

Unfortunately this meant that even a slight change in the Minlog internals
could break the texoutput module and make it non-functional. This was the
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case with Minlog 4. This recent version was a major rewrite of the core code
with new additions and features. The texoutput module became obsolete in
a moment. An upgrade to the module was not simple enough. In fact we
could argue that upgrading the old texoutput module to be compatible with
Minlog 4 was not an easier task than creating a new module from scratch.

Therefore, it is clear that compatibility is our primary objective. We
need the new module to be easy to maintain, extend and upgrade so that in
the future it can follow new Minlog versions with little or (in the ideal case)
no modifications. We are even prepared to sacrifice some functionality to
achieve this. As we try to avoid deep integration with the main Minlog system
however, we realise that we do not have direct access to Minlog internals and
in effect, the capabilities are getting more limited. This is the price we have
to pay for compatibility.

Of course this problem is not new in software engineering. In the pres-
ence of an existing large system (in our case, Minlog) the programmer who
wishes to attach new functionality must decide on the level or integration
between the new module and the system. Abstracting the low level details
and using existing interfaces results in a stable implementation. Integrating
deep into the core system allows for speed and direct manipulation of the
system internals which results in great functionality.

There is no “correct” or “wrong” approach. Depending on the situation
the programmer must choose the one that seems fit for the given project.

4.2 Following the abstract data types paradigm

Data abstraction is one of the concepts that allows us to build stable software.
The central idea is that the data manipulation routines are hidden from the
outside world. Only communication interfaces are exposed for data input and
data output, but the processing functions are never directly accessible. This
means that they can be improved or completely changed at any time and
nothing will break as long as the communication interfaces stay the same.
Figure 4.2 shows the idea.

This idea can be extended by defining that a software module is just a set
of such abstract data types. Object oriented programming is also based on
this concept. The software code is never just a spaghetti of interconnected
functions which have universal access everywhere. Instead, we have only in-
dividual objects with exposed interfaces. Figure 4.3 resembles a full software
system. The programming rules are simple:

1. Data and control flow is resolved into inter-object communication via
the exposed interfaces.
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Figure 4.2: The data abstraction principle

2. An object has no knowledge of the internal implementation of any other
object.

Object oriented programming goes even further with additional concepts
like encapsulation, inheritance, access control e.t.c in order to achieve max-
imum flexibility. A full explanation of all these is outside the scope of this
document. More important is the fact that each time we need to upgrade
certain functionality we change only the internal implementation for one or
more objects and the whole system remains unaffected. It is also possible
to define additional communication interfaces which co-exist with the exist-
ing ones. Breaking the communication interfaces themselves is more difficult
but certainly easier then the spaghetti code approach. The programmer just
needs to track the objects that make use (have bindings) of the interfaces
in question and make appropriate changes. Objects that never used them
anyway, can work now as before. For a formal description of abstract data
types the reader is referenced to [EA00].

Abstract data types are in no way perfect. They have their disadvantages
too. The most obvious one is the “plumbing” code that we need to add in
order to form all the infrastructure of the communication channels. We need
to build all the proxies which will forward the outside function calls to the
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Figure 4.3: A set of abstract data types

internal structure of an object (in both directions). We must agree on the
communication channels themselves because many objects might be built
by external developers (third parties). We must decide on marshaling and
unmarshaling of parameters as they are packaged and transfered through the
system. Finally there is a small impact on performance since communication
overhead is added for each function call, now that data must travel via proxies
from source to destination.

Software engineering is always full of decisions regarding the design and
implementation of the system. The reasons behind our choices as we progress
through development should be clear now, as we have already mentioned that
we want easy maintenance and extensibility.

4.3 Building a Minlog module

If we focus on the Minlog system we can easily visualise the ideal case. We
draw an imaginary line (see Figure 4.4) which splits the main system from the
module. We will only write code that belongs to the module but we will never
touch the internals of the Minlog system itself. To follow the abstract data
types approach we need to select a few but important Minlog functions which
will be used as communication channels. These channels will be the only ones
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Figure 4.4: The module approach

which will transfer data between the module and the Minlog system, and that
is why they are crossing the boundaries (the imaginary vertical line).

The imaginary line essentially defines that neither the module nor the
Minlog system know or care about the internal implementation of each other.
They only communicate via the well-known interfaces. The Minlog system
can change at any time several parts of its code, and in a similar manner
the module may be upgraded or extended in the future. Nothing will break
however, since the interfaces will stay the same.

This design spawns several architectural questions that need to be an-
swered. These questions have nothing to do with the module implementa-
tion (by definition) but rather with which parts will be considered public
(meaning interfaces that are expected to stay in place) or private (meaning
functions which might change or perish without notice).

The first question is the position of the imaginary line. We can position
this line in the virtual space more on the right (making a tight module and
bloating the Minlog system with interfaces) or more on the left (making the
Minlog system minimal, and implementing most functionality in the mod-
ule). The line does not have to be vertical too. It can make corners/curves
depending on the level of integration we want. Maybe there are parts where
the core Minlog system has strong foundations where we can build on, and
other parts where we feel that we need to include a great deal of functionality



CHAPTER 4. PROJECT OBJECTIVES 39

in the module code.
The second question has to do with the selection of the interfaces which

will serve as “bridges” connecting the two sides. There can be numerous ways
to cross the border, but finding the optimal solution can be difficult. We need
to choose those functions that will help us build the module using current
Minlog code without having to reinvent the wheel each time (i.e. solving
problems which are already solved by the Minlog system itself). Having too
abstract interfaces means that the module needs a lot of plumbing code.
Having too specific interfaces means that the module knows a great deal
about Minlog internals which is what we want to avoid in the first place.

On a side note we need to consider also the number of the interfaces.
This means that apart from which functions are allowed to cross the border,
we care about how many of them exist. Again a balance must be found for
the optimal results. Too few interfaces will make the module very limited.
Too many interfaces and we will not have a “module” anymore, but rather
a new Minlog component.

This was the theoretical background regarding the software architecture
of the project. The next chapter examines how all these decisions affect the
actual programming code of the module.
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Analysis and Design

As already mentioned, Minlog stores all the details for a proof in a huge list
called (current-proof). Actually this is the name of the Minlog function
that returns the list as its result, but this minor point does not affect our
design decisions.

5.1 The initial approach

The naive (and most obvious way) to transform the contents of this list to a
LATEX file would be the creation of a single function (called transform-proof

of something similar) which takes as argument the input proof list and creates
as output a big LATEX string that can be dumped to a file. Figure 5.1 outlines
this approach.

This solution seems logical and also fast. We have only one “processing
pipe” which takes from one end the raw (current-proof) list, then processes
it and from the other end we have a big LATEX string.

Unfortunately this is not the optimal in our case. Our goals (as defined
from the previous chapter) are:

• Extensibility

• Reliability

• Easy maintenance

• Easy upgrade/improvement

These goals may seem similar but the obvious solution does not accomplish
them.

40
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Figure 5.1: The obvious solution

The reason for this, is that a careful analysis of the situation reveals that
there are actually two distinct kinds of code that have to be implemented.
The first kind is Minlog-dependent since it uses Minlog functions to extract
from (current-proof) the needed information. The second kind is Minlog-
independent since it just creates LATEX sentences and mathematical formulas.

A monolithic solution like the one mentioned, mixes these elements to-
gether. A programmer who is called to extend the code cannot easily identify
the parts of the module which belong to the first or the second kind. If for
example the Minlog system changes in the future, the programmer should
have an easy way to focus only on the Minlog dependent parts. In a similar
manner if someone wants to add functionality to the LATEX output, he/she
should care only about the LATEX code segments.

5.2 The two-step transformation process

It is therefore natural to split the transformation process into two separate
phases. Each phase contains the respective code functionality. Now the
different role of each part is evident.

Stage 1 In this stage the (current-proof) list is parsed. Several Minlog
functions are used to extract only the needed information. Formulas



CHAPTER 5. ANALYSIS AND DESIGN 42

Figure 5.2: Two-step transformation process.

are also formatted. The result of stage one is an intermediate proof
form independent of Minlog. All communication between Minlog and
the texoutput module happens at this stage.

Stage 2 In this stage the module transforms the intermediate result from
stage one to a LATEX file. No communication takes parts with the
Minlog system. The code is completely self-contained with no external
dependencies of any kind.

Figure 5.2 shows this approach. The function that performs the first step
is called express-proof. The function responsible for step two is called
verbalise-proof. The full LATEX string can now be obtained (in Scheme
terms) by

(verbalise-proof (express-proof (current-proof)))

The motives behind the intermediate form are well known. The same
approach is found in LATEX itself where a document is first processed into a
device independent form (.dvi files) which is then transformed to its final
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state (HTML, ps and pdf files). Implementing another output target for
LATEX means implementing only the output routines of the dvi file but not
the source text file (.tex) which have already been implemented.

Compiler technology is another area of intermediate forms. A compiler
is split into the front-end which is responsible for parsing the input source
files and creating pseudo assembly code, and the back-end. The latter is
responsible for converting the pseudo assembly code to the real machine code
of a specific architecture. This means that front-end and back-end can be
developed separately. Improving a compiler to take advantage of the latest
in processor technology means that improvements will be only made to the
back-end. In a similar manner a compiler for a completely new language can
reuse the well tested back-end of an existing compiler, while the front-end will
deal only the new language. And of course it is possible to port the compiler
to a completely different processor architecture, since the amount of work
that has to be done is halved. Only the back-end needs to be changed1.

Finally the same idea is the basis of the virtual machines used today.
The Java compiler from Sun Microsystems has one front-end (for the Java
language syntax) and multiple back-ends for the various computer platforms
(Solaris, Win32, Linux). The .NET framework from Microsoft has instead
multiple front-ends (for C#, Visual Basic e.t.c) and one back-end (for the
Windows platform). In both cases the compiled code first passes from a
platform/language independent “byte-code” code which is then executed by
the respective virtual machine environment.

In our case this two stage process means that if in the future the tex-
output module is to be enriched and used for another output formal other
than LATEX, it can easily be done without starting from scratch having to
implement again the Minlog specific functions. For example an XML output
routine could be developed which has as input the custom proof created by
the (express-proof) function, rather than the raw (current-proof) list.

5.3 Interface definition

One big difference between the first and second stage is that the latter is self-
contained while only the former makes use of Minlog functions. We could just
mark in the code (with comments) which segments belong to which stage,
but this does not show which are the Minlog functions used.

The Minlog functions that we use in our code serve as the interfaces which
we have focused on all the previous paragraphs. These functions are clearly

1This seems to be one important factor of the success of the popular GCC (GNU
compiler collection)
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included at the start of the source code file where their aliases are introduced.
Here is a small sample:

; Defined in src/pproof.scm, line:201

(define input-proof num-goals-and-proof-to-proof)

; Defined in src/proof.scm, line:15

(define get-formula-from-proof proof-to-formula)

; Defined in src/proof.scm, line:169

(define is-proof-in-imp-intro-form? proof-in-imp-intro-form?)

At first glance these function redefinitions may seem redundant. They
are however crucial to our purpose. They serve two goals at the same time.

First they show which functions of the Minlog system are used in the
module. They are actually the interfaces that the module will use to com-
municate with the Minlog system. All data flow from/to Minlog passes from
these functions. The programmer has all this information gathered in one
place. No need to read the actual implementation code to track down Minlog
functions. They are known in advance from this section. It is also easy to
check if a Minlog upgrade will affect the module or not. Changes happening
to Minlog in other functions apart from those included in this section do
not concern the module at all. If on the other hand, a function defined here
changes, it is easy to isolate it and see how the module should be changed
too.

The different name for these functions helps also code maintenance in the
hypothetical case where a Minlog function changes its name. In this case a
simple renaming of the function can happen here and all the module code
will continue to function since it uses the alias. For example the Minlog
function num-goals-and-proof-to-proof is currently used in the module
as input-proof. It is possible however that the name of this function will
become obsolete, and in its place only the current-proof function will be
used (which exists already in the Minlog system). In this case a simple
renaming in the respective line will point the input-proof name to the
current-proof function. The module will continue to work since all the
module code contains references to input-proof which do not depend on
the Minlog name but just need to point to the correct function.

For clarity we have also included in the comments the exact Minlog file
name and line number where each function resides.
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5.4 Design enhancements

We have already discussed how the abstract data types approach affects
the module as a whole. We have shown that this will make the separation
from the Minlog system more evident and at the same time help future
maintenance of the code.

This does not stop us however, to think in the same way for the texoutput
module itself. It would not make sense after all not to follow this principle
in the core code of the module. Data abstraction can exist in small or large
scale projects. In large projects it is almost imperative but it can also be
applied in small projects too. Therefore we will attempt again to hide the
internal layout of major data structures and provide access, only via well
guarded interface functions.

In programming terms we have used the techniques introduced in the
chapter about the Scheme programming language. We have specifically cho-
sen the first (simpler) way to create Scheme “objects” for various structures
inside the code. For each such object, there is a constructor function and
several accessor functions. Even functions which process the object itself do
not have direct access on its internals. They must go through the interfaces
like everything else in the module. Table 5.1 shows the format of this.

Function Format Example
Creating (make-object component-list) (make-all-elim-node formula . . . )
Accessing (get-component-from-object object) (get-arg-from-all-elim-node node)
Processing (action-object object) (verbalise-all-elim node)

Table 5.1: Object programming in the module code

A similar syntax is used all over the Minlog system code so we decided
to adopt it too for the module code.

A large part of the texoutput module code revolves around the inter-
mediate proof form which is created by (express-proof) and processed by
(verbalise-proof). The structure itself is a long Scheme list which contains
smaller lists of its own with subproof. If we map this list into 2-dimensional
space it is essentially a tree structure. The leaves are small subproofs (e.g.
assumptions) while the nodes are proof transformations (this is further ex-
plained in the next chapter). It is therefore natural to consider the tree nodes
as individual objects which can be manipulated independently.

For example the all elimination and conjunction introduction are (like
most other data structures) simple lists. This is abstracted by presenting
them as objects.
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;All elimination methods

(define (make-all-elim-node formula operator argument) ...)

(define (get-result-from-all-elim-node node) ...)

(define (get-op-from-all-elim-node node) ...)

(define (get-arg-from-all-elim-node node) ...)

(define (verbalise-all-elim all-elim-node) ...)

;And Introduction methods

(define (make-and-intro-node formula left-part right-part) ...)

(define (get-left-from-and-intro-node node) ...)

(define (get-right-from-and-intro-node node) ...)

(define (verbalise-and-intro and-intro-node) ...)

In reality the accessor functions are really simple. Most times they just
select an element from the internal list (the constructor itself is a (list)

function). For example in order to get the operator from an all elimination
node the code just selects the third element from the internal list.

(define (get-op-from-all-elim-node node)

(list-ref node 2))

But this is the hidden implementation. If in the future the list components
are rearranged then nothing will break because a single change in the accessor
function will correct all the code that uses it.

This also brings us to a similar abstraction topic. Most Lisp derived lan-
guages revolve around lists and their manipulation. The primitive functions
are car and cdr (and variants) which can be used to select the head or the
rest of a list. Code however which uses them is “ugly”. It reveals the in-
ternals of the data structures. We go a step further as to eliminate them
too.

We do this in a specific way for each structure. As an example we as-
sume we have a data structure which contains two objects called intro-list

and kernel respectively. The structure is formed just by “listing” them to-
gether. We build additional code which hides this fact and makes the code
implementation independent.
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(define (get-custom-intro-list intro-list-and-kernel)

(car intro-list-and-kernel))

(define (get-custom-kernel intro-list-and-kernel)

(cadr intro-list-and-kernel))

It is hard to read code filled with primitive list functions. Having named
functions (as delegates) not only serves data abstraction but also gives some
meta-information about the data recovered (this first function obtains the
intro-list while the second return the kernel object).

This concludes our design and format decisions for the code.
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Chapter 6

Implementation Process

Now that all the theoretical foundations are in place, we can dive into the
implementation details of the development process and attempt to explain
all our decisions during each coding phase.

6.1 Representation of formulas

Proofs are essentially a combination of formulas. Every Minlog session starts
from a given formula which needs to be proved. It is the starting point of the
whole mathematical process. Then by using Minlog functions and facilities
several transformations are applied on each step until the goal is proved (the
original formula). It is therefore imperative to develop a LATEX presentation
of formulas. In fact the whole development starts from formulas. A minimal
tex module which just prints the given formula but nothing else is our first
milestone.

Internally, a formula is just a long Scheme list holding the symbols, vari-
ables, predicates and all its other parts. This list can be thought of as a tree.
Nodes of the tree are connectives, while leaves are either “atomic” parts or
formulas themselves. See figure 6.1.

Because we will use Minlog accessor functions to process the list structure
rather than parsing it directly, the resulting module function will clearly
belong to stage 1.

At this point normally we would have to scan the Minlog sources and col-
lect all the formula related functions. All code regarding formulas in Minlog
is included in the source file formula.scm in the Minlog source directory. In
this case however, things were more easy than we thought.

Minlog includes already for its own purposes a formula-formatting func-
tion. The function is named formula-to-string (which resides in for-

49



CHAPTER 6. IMPLEMENTATION PROCESS 50

Figure 6.1: Processing and presenting Minlog formulas

mula.scm too). Minlog uses it to express formulas during the interactive
proof sessions. It can be thought as the opposite of parse-formula (or pf
for short) which was demonstrated in the section about Minlog. In effect the
parse-formula function reads a normal string and creates a Minlog formula
structure while the formula-to-string converts it back. Figure 6.2 shows
this concept.

It only seems logical to adopt the formula-to-string Minlog function
and modify it for our needs. The changes are limited. All the “string repre-
sentation of symbols” (like ex,all) need to be changed to the LATEX counter-
parts (\exists, \forall).

The modified function is included in the module as convert-formula-to-latex.
It is a recursive function (as the original). Basically it takes a formula struc-
ture, formats and prints the connective symbol and then calls itself on the
sub-formulas of it. We can illustrate this with an example. This is the sample
code for an implication formula.

[...in a cond block of convert-formula-to-latex...]

((is-imp-formula? formula)

(let* ((prem (get-premise-from-imp-formula formula))

(concl (get-conclusion-from-imp-formula formula))

(string1 (convert-formula-to-latex prem))

(string2 (convert-formula-to-latex concl)))

(string-append

(if (or (is-quant-prime-formula? prem) (is-and-formula? prem))
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Figure 6.2: Converting a formula to/from a string representation

string1

(string-append "(" string1 ")"))

" \\to " string2)))

[... rest of cond block...]

The code just inserts the \\to string (the LATEX token for implication)
between the components of the formula, which themselves are then formed
by convert-formula-to-latex recursively (the enclosing function). We use
two backslashes for all LATEX elements to show Petite Scheme that we mean
a literal backslash.

We should also note that all functions used to analyse formulas (e.g.
get-premise-from-imp-formula) are not native Minlog functions, but rather
aliases as described in the previous chapters. So this is where the interfaces
are used. Thus the convert-formula-to-latex function belongs to stage 1.

The current implemented formula-formatting function supports the types
of formulas shown in table 6.1 where “nc” means non-computational.

Description Minlog symbol LATEX token Example
Implication imp \to A → B
Conjunction and \land A ∧B
For all all \forall ∀xA(x)
Exists ex \exists^{*} ∃∗xB(x)
For all(nc) allnc \forall^{nc} ∀ncyD(y)

Table 6.1: Formulas supported (connectives and elements)
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The function also includes code for atomic elements and predicate vari-
ables which are the lowest level formula components (the leaves of the tree).

With the formula representation code in place, we can now tackle the
main problem. The ultimate goal of the module is to express in an efficient
manner the Minlog proofs.

6.2 Proof verbalisation (top-down)

Proof verbalisation is a huge topic on its own. It exists even out of the context
of Minlog. Logic proofs consist of many small individual steps which lead to
the final result. Apart from the important steps there also some details which
most times are left out (they are obvious). Also the style of the representation
can vary. There are even subjective reasons where a proof can be expressed
in one way or another, among logic researchers themselves. It is generally
hard to predict every possible case and try to provide a representation that
satisfies everyone.

As an experiment we can use the proof representation support which is
built-in already into the Minlog system. Minlog includes the (diplay-proof)
function which prints out the individuals steps involved in the proof. It is
completely mechanical and there is no attempt to beautify or clarify the
result. It was briefly shown in section 3.

For example for the test listed in section A.2 the output would be:1

> (dp)

; ......all x.A(f x) -> B x by assumption u13

; ......z

; .....A(f z) -> B z by all elim

; ......all y A y by assumption u14

; ......f z

; .....A(f z) by all elim

; ....B z by imp elim

; ...all z B z by all intro

; ..all y A y -> all z B z by imp intro u14

; .(all x.A(f x) -> B x) -> all y A y -> all z B z by imp intro u13

; all f.(all x.A(f x) -> B x) -> all y A y -> all z B z by all intro

The dots show the depth of the proof tree that is being processed by
the algorithm. The “uxx” strings are the assumptions introduced during the
proof process. The numbers are internally generated by Minlog. Each line

1“dp” is a short for “display-proof”
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has a very simple format. First it mentions the result of the transformation
and then mentions the name of the transformation applied in this step.

The changes to beautify the algorithm are minimal. In fact we have
already implemented a similar function into the module code, which is used
for debugging purposes. That is, the final LATEX file includes this output so
that someone can see the “raw” proof process, since the actual output of the
module involves a bit more high level code.

The main expression problem of this function (apart from the rough pre-
sentation) is the “flow of thought” that governs it. It starts from various
assumptions, performs transformations and then reaches the final result. A
human reading this proof would have difficulties to comprehend why the
specific transformations were made and why in this order. Of course after
seeing the final result their purpose is clear, but the reader is expected to feel
“cheated”. Meaning that for someone who knows already the final transfor-
mations (such as the machine) the beginning of the proof is also clear.

This is the whole concept of forward reasoning. The proof process starts
from the top and goes straight down to the bottom of the proof tree[ACP00].
By proof tree we mean the usual proof notation which is the sum of all
individual transformations:

∀xA(f(x)) → B(x) z
u13: ∀−

A(f(z)) → B(z)

∀yA(y) f(z)
u14: ∀−

A(f(z))
→−

B(z)
z ∀+

∀zB(z)
u14 →+

∀yA(y) → ∀zB(z)
u13 →+

(∀x.A(f(x) → B(x)) → ∀yA(y) → ∀zB(z)
f ∀+
∀f.(∀x.A(f(x) → B(x)) → ∀yA(y) → ∀zB(z)

Forward reasoning maps into a top to bottom analysis of the proof tree.
Figure 6.3 shows this in a visual way.

A human however, would probably choose another path for the proof.
Rarely a human would start with forward reasoning. After all, knowing in
advance all the steps of the proof process from start to end would require
heavy expertise on the field. The alternative path is to start from the end. We
look at the final formula (what we want to prove) and move backwards. This
feels sometimes more natural because one can easily guess the transformation
step if the end result is known and then just needs to find a way to “reach”
this step from the current context.

In the real life a mixture of the two ways is actually used. One starts
with backward reasoning to reach an intermediate stage in the proof process
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Figure 6.3: Forward reasoning (top-down)

and then realises the steps needed to get there so continues with forward
reasoning. For our present example this would go like:

(Starting with backward reasoning-from the bottom of the tree)
Our goal is ∀f.(∀x.A(f(x) → B(x)) → ∀yA(y) → ∀zB(z). Let
f be arbitrary. Let us assume u13: ∀xA(f(x)) → B(x). Let us
also assume u14:∀yA(y). Finally let z be arbitrary. We have to
show now B(z). (We have reached the middle of the tree).

(At this point we change to forward reasoning-from the top of the
tree) We use the assumption u13 (∀xA(f(x)) → B(x)) with x:=z
which gives us A(f(z)) → B(z) . It remains to prove A(f(z)).
We use the assumption u14 (∀yA(y)) with y:=f(z) to obtain this.
Proof finished.

A human also would use numbers for identifying assumptions rather than
u13, and u14. The code implementation violated anyway the intermediate
form idea since it was a direct translation of the Minlog structure to English
text. Therefore it was clear that a modification of the display-proof func-
tion of Minlog was not going to become the final implementation of our code.
For this reason we decided to start from scratch and design a solution which
would:

1. Truly match the specification (intermediate form/2 stage process).

2. Allow for both backward and forward reasoning.

6.3 Proof analysis

With the definition and clarification of the architecture of the code, we could
now focus on each stage separately. Stage 1 is the transformation of proof
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into an intermediate form without considering any LATEX matters at this
point. This means that the main algorithm for stage 1 (proof analysis)

• Takes as source the Minlog internal proof.

• Has access to the Minlog system via the interfaces during processing.

• Outputs as target the intermediate form.

• Is LATEX independent.

Since the algorithm is not bound by presentation matters the intermediate
form can have any structure that we want. The important point here is that
we can follow the already well chosen idea of lambda terms. Minlog uses the
Curry Howard correspondence for the internal proof structure, so it is only
logical to share the same idea in the module code. The details were explained
in section 3.3.

Minlog provides (as we saw in section 3.3) the display-proof-expr func-
tion which prints out the λ-term of the proof. If we continue our example
from the previous section this would give us:2

> (dpe)

(lambda (f)

(lambda (u13)

(lambda (u14) (lambda (z) ((u13 z) (u14 (f z)))))))

This is printed out in the terminal window and in mathematical text
it would translate as λf, λu13, λu14, λz, .(u13 z)(u14 (fz)). This actually
presents the proof as a series of λ-abstractions and applications allowing
us to examine the “history” of this particular proof, rather than just see the
finished result.

Therefore we implemented our intermediate proof form as a low level
instance of the λ-terms proof structure already used in Minlog. The re-
sulting function is the express-proof function in the code which outputs
the intermediate form. Again the result is a long Scheme list with various
components.

The next important point is the information that we need to extract
from each step. The abstract λ-form of the proof shown above, is a bit
too abstract for us. At the very basic level we are interested in the type of
each step. For instance, we want to know that the first λ-abstraction is an
all-introduction, and we want to know that the second λ-abstraction is an

2Again “dpe” is a short for “display-proof-expr”
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implication introduction. And we are interested of course in all the formulas
involved. What was the stage of the proof before and after each step is vital
for the final presentation.

This leads us to the second set of Minlog interfaces (the first was for
formulas) which are used in order to extract the various components from the
Minlog proof structure. For each step the necessary information is obtained
from the Minlog proof and then is stored in the intermediate form as tree
node (make-something-node function as seen in the specification chapters).

Here is a small sample from the express-proof-aux function which is
called by the actual express-proof.

[...in a cond block of express-proof-aux...]

((is-proof-in-imp-elim-form? proof)

(let* ((op (get-op-from-imp-elim-proof proof))

(op-formula (get-formula-from-proof op))

(arg (get-arg-from-imp-elim-proof proof))

(arg-formula (get-formula-from-proof arg))

(formula (get-formula-from-proof proof)))

(make-imp-elim-node formula (express-proof-aux op) op-formula

(express-proof-aux arg) arg-formula)))

[... rest of cond block...]

This describes the processing of implication elimination. We need to
extract two things from the proof. Minlog names the two parts as operator
and argument. These are stored in an abstract node object along with their
formulas. The function is (as expected) recursive since it calls itself for the
two parts in turn. Also notice that the “get-” functions are aliases for the
actual Minlog functions.

6.4 Proof verbalisation (mixed reasoning)

Developing the code for the intermediate form export is only the half part of
the process. We still need to implement the code that outputs the LATEX file.
This brings us to stage 2. The characteristics of the main stage 2 algorithm
are:

• Takes as source the intermediate form produced in stage 1.

• Does not have access to Minlog functions.

• Outputs LATEX source files ready to be parsed by the LATEX tool-chain.
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Figure 6.4: Mixed reasoning style

• Is LATEX dependent (but Minlog independent).

The most important limitation we have for stage 2 is the inability to use
Minlog functions. Stage 2 should be pure Scheme code and any communica-
tion with Minlog should have finished at this time. If we need communication
with Minlog again we would actually modify the stage 1 code and store the
returned information temporarily for stage 2 code to access it.

If we return to the proof verbalisation topic we still need to find a way
to use mixed reasoning in the final result, and not just forward reasoning as
the display-proof function does. As shown from the previous chapters the
ideal proof verbalisation structure for our example would be:

(Backward reasoning first) Let f be arbitrary. Let us assume u13
. . . . Let us also assume u14 . . . . Finally let z be arbitrary . . . .

(Then forward reasoning). We use the assumption u13 . . . . We
use the assumption u14 . . . . Proof finished.

If we visualise this for the proof tree of the example we get something like
figure 6.4. The dotted arrow shows the change of reasoning and the “jump”
from the middle of the tree to the top of it.

We have now reached another important milestone of our project. We
need to find a way to express proofs in mixed style reasoning. And not just
for this particular example which we have examined so far, but for all Minlog
proofs. The solution has to be generic enough to accommodate all proofs,
but at the same time sophisticated enough to output the expected results for
all cases. We have spent a lot of time trying to find patterns in the proof
that will give us some hints about the type of reasoning that seems “natural”
to the reader, and when we are supposed to use each one. At first glance the
only important question seems to be the point that we switch to backward
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reasoning. But this is only part of the real problem since it is perfectly
possible to return to forward reasoning again at some later time.

The breakthrough happened when we looked back at the λ-term repre-
senting the original proof. We include it here again for convenience.

> (dpe)

(lambda (f)

(lambda (u13)

(lambda (u14) (lambda (z) ((u13 z) (u14 (f z)))))))

If we compare the λ-form with the “ideal” text representation using mixed
reasoning as outlined before, we can discover they they are matching! It is
easy to find this if one knows where to look for. Let us break down the
λ-form and see how its parts are expressed in text.

First we have a λ-abstraction. This is the first sentence of the text “Let f
be arbitrary”. Then we have two more λ-abstractions involving assumptions
u13 and u14. The text continues as expected with “let us assume u13 . . . ,
let us also assume u14.” Finally we have one more λ-abstraction which again
is the next sentence of the text stating that z is assumed to arbitrary.

Next, the λ-term changes from abstractions to applications. This is also
our cue for the change of reasoning style from backward to forward. We
have the λ-applications involving u13 and u14 which are the sentences in
the text starting with “we use assumption...”. Actually there is one more
λ-application in between (an implication elimination) which is not mentioned
in the text since it is considered obvious, but the general principle applies
everywhere.

It should be evident now, that not only storing the proof process as a
λ-term is convenient from the proof verbalisation point of view, but also we
made a good decision keeping the λ-term style storage for our intermediate
proof form too. The λ-term actually “guides” us in the way we express the
proof in English text.

Having realised this concept, the technical part of expressing the proof
does not present any major difficulties. The function responsible for stage
2 (proof verbalisation) is verbalise-proof, which is really just a front-end
to verbalise-proof-aux. This functions is rather simple. It just detects
the kind of nodes the intermediate form contains and calls the appropriate
verbalisation function which performs the actual job of creating a LATEX
string. Here is a small sample of the code:

[...in a case block of verbalise-proof-aux...]

(case (car custom-proof)
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((all-intro)

(verbalise-all-intro custom-proof proof-depth long?))

[... rest of case block...]

The proof-depth and long? arguments will be explained in the next
chapter. What follows is one verbalisation function for the all-intro-node.
There is one such function for each type of node that the intermediate proof
form can contain.

(define (verbalise-all-intro all-intro-node proof-depth long?)

(let ((english1 "Let ")

(english2 " be arbitrary")

(what (get-var-from-all-intro-node all-intro-node))

(rest (get-rest-from-all-intro-node all-intro-node))

(english3 ", and then we have to show ")

(goal (get-kernel-string-from-all-intro-node all-intro-node)))

(string-append

english1 what english2 english3 goal

". " (verbalise-proof-aux rest proof-depth #f))))

What is important to notice here is that the code contains no Minlog
functions at all. All the accessors used are module code only. This keeps the
verbalisation process (stage 2) completely Minlog independent obeying the
specification explained already.

The complete result of the proof verbalisation for our example is this:

Formula to be proved :∀f. (∀x. A(fx) → Bx) → ∀y Ay → ∀z Bz

Let z be arbitrary, and then we have to show (∀A(fx) → Bx) →
∀yAy → ∀zBz. Let’s assume ∀x.A(fx) → B(x)[u13]. We now
need to prove ∀yAy → ∀zBz. Let’s assume ∀yAy[u14] . We now
need to prove ∀zBz. Let z be arbitrary, and then we have to
show Bz.

We instantiate u13 with z in order to obtain A(f(z)) → B(z). It
remains to show A(fz). We instantiate u14 with fz in order to
obtain A(fz).

The result is far from perfect. In the next chapter we will explain some of
the modifications and improvements involved in the beautification process.
The basic foundations are now in place and we have the output of all deriva-
tions/transformations shown in table 6.2. Induction is a special case that
will be examined later.



CHAPTER 6. IMPLEMENTATION PROCESS 60

Description Module function
All introduction verbalise-all-intro

Implication introduction verbalise-imp-intro

Implication elimination verbalise-imp-elim

All elimination verbalise-all-elim

Conjunction introduction verbalise-and-intro

Conjunction elimination (right) verbalise-and-keep-right

Conjunction elimination (left) verbalise-and-keep-left

Assumption variable verbalise-avar

Axiom constant verbalise-aconst

Table 6.2: Verbalisation functions



Chapter 7

Expression Enrichment

At this point our implementation can deal with all kinds of proofs listed in
the previous chapter in a predictable way. The presentation process (stage
2) however, can be enhanced more in order to seem more natural for human
readers.

In this chapter we describe all our efforts to enrich the final English text
and make it more readable, trying to avoid the mechanical output of the
export algorithm. These modifications do not affect at any level the abilities
of the code. They do not add new features. Instead they are verbalisation
enhancements for various proof cases.

It is impossible to predict every possible case of course. Text exported
automatically by a machine is doomed to look strange and cold to human
readers. The effort to beautify certain cases simply exceeds our knowledge
and programming expertise. This project is not about artificial intelligence
or natural speech processing so we are happy to always have a working but
cumbersome text output process.

7.1 Numbering assumptions

The first evident problem in the text output is the naming for assumptions
as they are defined and used. Minlog uses small strings with a letter and a
number (e.g. assumption u14). These are introduced when an assumption is
created, and referenced when an assumption is used. The result is very ugly,
especially since the numbers have no meaning to the human reader (they do
not start from the beginning). In fact it appears that Minlog creates the
numbers in a way that seems almost random to the external observer.

Therefore we needed to replace these small strings with purely numbered
assumptions in order to match the common technique used by humans them-
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selves. That is, convert the output so that it contains phrases like: . . . we
can assume A → B [1]. . . and later when the assumption is used: . . . using
assumption [1] . . . .

This proved to be one of the easiest modifications since the problem was
already solved by Felix Joachimski, the author of the old texoutput module.
The idea is very simple, but it works. At any moment the program uses a
Scheme association list to keep track of the assumptions introduced along
with their assigned number. This list is filled during stage 1 via the function
add-assumption-number. When in either stage an assumption needs to be
referenced, this list is scanned in order to obtain the matching number. The
function that implements this is look-for-assumption-number. The pro-
gram also keeps tracks of a global variable with the last assumption number
used, which is accessed during the creation of a new assumption.

A minor shortcoming of the code is that it employs global storage space.
The list itself is a global variable. But since it worked flawlessly and there
were no performance problems in the horizon we decided to adopt the idea
completely unchanged.

7.2 Grouping multiple assumptions

The assumption verbalisation algorithm prints out the assumption intro-
duced and then, immediately, what needs to be done in the next step. This
works pretty well when we have only one assumption. The resulting text is
something like this: We can assume X[1]. Now we still need to prove Y. . . .

Most proofs however start with multiple assumptions. In our example
this would render as:

Let z be arbitrary, and then we have to show (∀A(fx) → Bx) →
∀yAy → ∀zBz. Let’s assume ∀x.A(fx) → B(x)[1]. We now need
to prove ∀yAy → ∀zBz. Let’s assume ∀yAy[2] . We now need to
prove ∀zBz. Let z be arbitrary, and then we have to show Bz. . . .

This seems completely unnatural. A human reader does not want to be
reminded of the rest of the proof at each step. In fact, a human reader is not
interested in the intermediate steps at all but only the final one. Therefore
we needed to modify the code to output something like:

We can assume f , ∀x. A(fx) → Bx[1], ∀y Ay[2], z. Then we have
to show Bz.

This is the concept of assumption grouping which makes the final result
much more readable. In order to create this effect however, we need to
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Figure 7.1: Merging multiple assumptions

override the λ-representation a bit. We create a new virtual transformation
called “multiple introduction” which handles these cases.

The code essentially employs a look-ahead tactic. When it encounters
an introduction transformation (either all or implication), it checks the next
transformation too. If the next transformation is something else, the code
just creates the respective node as normal (all-intro-node or imp-intro-node).
If however, the next transformation is an introduction itself, the algorithm
creates a new mult-intro-node and merges the two introductions together,
keeping only the result of the second one since this will interest the reader
in the end. The code is of course recursive in order to handle multiple
introductions and not just two. Figure 7.1 shows the idea in a simplified
way.

Notice that although the technique is depicted as being linear, this is
not the truth. The lambda-proof structure is a tree so the “look-ahead”
process actually scans in tree nodes. This process is performed by the
custom-intro-to-intro-list-and-kernel function. Some essential modi-
fications are also present in the express-proof-aux function.

The individual introduction nodes are stored in a compact form inside the
host mult-intro node. They are stored inside mini nodes which are abstract
node objects themselves. The respective constructors are make-inline-imp-intro-node
and make-inline-all-intro-node which are bundled with associated ac-
cessor functions. The whole process takes place during stage 1. Code in stage
2 is completely unaware of this since it makes use of the mult-intro node for
needed information.

It is convenient programmatically to store the inline nodes in reverse
order inside the host mult-intro node. This happens because we consider
important only the last transformation which will be printed in the We still
need to prove. . . part. This might seem awkward when looking directly at
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the intermediate form. The verbalisation functions (stage 2) are aware of
this fact of course and parse the node in reverse again, therefore emitting the
assumptions in the correct order as already demonstrated.

7.3 Grouping multiple all eliminations

A similar approach has been followed in the case of eliminations. In this case
however, we decided that we should only deal with all-eliminations and not
implication eliminations.

One all-elimination translates into we instantiate f(x) with x in order to
obtain . . . . If the subsequent transformations are all-eliminations too, the
result is a bit annoying for the human reader, since the text mentions the
formula after each individual transformation. Most humans would choose to
group the all-elimination steps together and jump straight to the final result.

To overcome this, we modified radically the all-verbalisation code (stage
2) to take into account this fact. The code looks ahead and groups all elimina-
tion together. This time however we leave the intermediate form unchanged.
That is, the λ− form of the proof still contains the chain of all-elimination
steps. Only the verbalisation stage has a different behaviour.

The modifications can be demonstrated with a simple example. We as-
sume that we need to prove the formula: (∀x, y. Ax ∧ Bx) → ∀x Ax . The
old code would produce a result like the following:

Proof: We can assume ∀x, y. Ax ∧ Bx[1], x. Then we have to
show Ax. We instantiate assumption [1] with x in order to obtain
∀y. Ax∧Bx. We instantiate this with y in order to obtain Ax∧Bx.
Keeping only the left part of this we get Ax.

The human reader does not want to see the assumption[1] first instan-
tiated with x and then with y. Instead he/she wants the final result. The
modified code produces output like the following:

Proof: We can assume ∀x, y. Ax ∧ Bx[1], x. Then we have to
show Ax. We instantiate assumption [1] with x, y in order to
obtain Ax ∧Bx. Keeping only the left part of this we get Ax.

The change might not seem important, but for more than two all-eliminations
the improvement is noticeable. In mathematical proofs 3 or 4 all-elimination
steps are not uncommon and in these cases the English text is more readable.
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7.4 Layout considerations

Testing small proofs is easy. Sentences are small and clear. Because the re-
sulting text is short, it is easy to follow the steps of the proof. The scalability
of the module can only be observed if really big proofs are used as input. The
output is also very interesting when the proof has more that one active goals.
For example in a conjunction introduction step one must provide proofs for
both parts of the formula before taking the conjunction as granted.

This issue was also taken into account by the the previous texoutput
module. We used the same approach introduced there but of course we had
to write code for our particular implementation.

Proofs are now separated in two kinds. First we have the so called simple
proofs which we expect to be small in depth, and the non-simple ones which
have a non-trivial λ-term (more than one step). This separation is just used
for presentation purposes. Technically all proofs are of the same format.
The idea is that when we find a simple proof we know in advance that their
rendering in English text will be compact, while non-simple proofs can take
an unknown number of sentences to explain. We use this in the verbalisation
step (stage 2) inside the program to make some “smart” decisions explained
in this section.

Currently we consider as simple proofs, assumption constants and as-
sumption variables. See the definition of the simple-proof? function.

7.4.1 Subproofs

The first presentation enhancement is the use of bulleting and additional in-
dentation to show in a clear way the goals being active. Typical examples of
this are with conjunction-introduction (as already mentioned) and implica-
tion elimination. Basically every proof transformation which can introduce
or depend on two smaller proofs needs this.

The program logic in these cases checks whether the smaller proofs are
simple or not. If they are, we assume that the reader will not be confused
since each goal will be proved in one/two sentences. If however we have
non-simple proofs then we insert bullet points and indentation to signify the
start of a new subproof. Of course it is also possible for a subproof to have
subproofs on its own. In order to help the reader keep track the number
of subproof levels at any time, we append the proof depth number (starting
from zero) to the bullet point of each subproof. An actual rendering of this
can be demonstrated in the example listed in section A.5.
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7.4.2 Selective formula listings

Another small problem which can be found in the automatic proof export,
is the formula where all the transformations happen. The program reminds
the reader at every individual step what is the source formula. This is not
wrong, but again it does not feel natural to the human reader.

Humans usually introduce important objects the first time they appear.
Afterwards they refer to them as “this” and “that”. Consider for example
the following proof text:

Formula to be proved :(∀x, y. Ax ∧Bx) → ∀x Ax

Proof:We can assume ∀x, y. Ax∧Bx[1], x. Then we have to show
Ax. We instantiate assumption [1] with x in order to obtain
∀y. Ax ∧ Bx. We instantiate ∀y. Ax ∧ Bx with y in order to
obtain Ax ∧ Bx. Keeping only the left part of Ax ∧ Bx we get
Ax.

In this simple case where we have only one flow of transformations, the
reader can easily keep track of the formula at each step by himself/herself.
Therefore we enhanced a bit further the export algorithm to mimic the hu-
man expectation. The modified algorithm would output the same proof as
following:

Formula to be proved :(∀x, y. Ax ∧Bx) → ∀x Ax

Proof:We can assume ∀x, y. Ax∧Bx[1], x. Then we have to show
Ax. We instantiate assumption [1] with x in order to obtain
∀y. Ax ∧ Bx. We instantiate this with y in order to obtain
Ax ∧Bx. Keeping only the left part of this we get Ax.

Notice how the last two steps of the proof refer to “this”. And of course it
is easy to see that “this” refers to the formula of the previous transformation
step. The result seems slightly better now to the reader.

Of course we cannot simply use “this” all the time. The first sentence
should always show all formulas. Also each time we start a subproof we need
to show the formulas again. Basically when things get complicated (e.g.
multiple transformation flows, long proofs) we need to mention the current
formula. In simpler case we can get away with “this” and “that”. Also it
is better to mention a formula when is not actually needed rather than the
opposite case. The reader will get very upset if he/she cannot understand
what “this” refers to, while a redundant formula appearance will just present
a minor annoyance.
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To accommodate this program behaviour we curry a boolean long flag
across transformation code. During the verbalisation of the proof (stage 2)
the algorithms query this flag to decide whether or not they should mention
the formula. At every recursive call of the verbalisation functions, there is
also the additional decision how the flag would be transfered to the next step.

All these decisions are based also on the concept of simple and non-
simple proofs explained in the previous subsection. In a similar manner we
examined the previous texoutput module code and adapted the code logic
for our implementation.

7.5 Induction

Induction proofs are very important. A lot of proofs use induction either
as an intermediate or as the last step. We have not mentioned induction in
the previous chapters. The reason for this, is the Minlog handles induction
proofs in a special way.

Induction is not a separate derivation (like implication elimination or
conjunction introduction). This was done on purpose since induction would
break the concept that each each derivation is a λ-abstraction/application.
That is, an induction cannot be stored (directly) as a λ-term. This means
effectively that there are not Minlog functions which give us the base or step
case given a derivation, because simply there is not such derivation type.

To store an induction, Minlog actually encapsulates it in the existing in-
frastructure. Induction in Minlog is a hard-coded axiom without any special
properties. The axiom formula is:

A(0) → ∀x(A(x) → A(x + 1)) → ∀xA(x)

Induction is used in order to prove ∀-formulas. For a given formula A(x)
we need to prove that it holds always for every possible input. That is the
last part of the axiom ∀xA(x). We can do this if have a base case and the
step case. If we assume that our base case is for x = 0 (but it can also be
for any other value, then first we need to prove this. This is the A(0) part
of the axiom. To finish the induction we need to prove the step case too.
Given x and assuming A(x) we must prove that the formula is also true for
the successor of x. That is the ∀x(A(x) → A(x + 1)) part of the axiom.
If these two cases can be proved (base and step) then the whole induction
formula is also true. We can see that the cases and results are connected
with implications to show this fact.

Although this implementation of induction makes Minlog less complicated
and more focused on its root concepts, induction extraction for the texoutput
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module becomes extremely difficult. Because an induction is hidden inside
the usual derivations (in this case in implication eliminations) we need again
to provide look-ahead code which pre-scans the proof structure in order to
detect inductions prior to the verbalisation stage.

If for example the proof is:

(imp-elim (...)

(imp elim (...)

(aconst (...) "ind" (...))))

we need our code to detect that we have an induction before the verbalisation
of the preceding implication elimination steps. The two elimination steps
contain the base and step case for the induction, so all information must be
gathered in order to print out the induction proof in a proper way.

The current implementation of the code handles induction proofs in this
manner exactly. Stage 1 code scans ahead the proof and prepares a virtual
induction tree node, while stage 2 just processes the induction node without
any communication with Minlog. There are two limitations imposed on the
program. The first is the detection of the induction. We need to find what
patterns do induction proofs have, so that we can include the appropriate
case in the look-ahead code. The second is that we must also extract correctly
the base and step case from the previous derivations leading to the induction
at every time.

If an induction is undetected by the program it will be printed as a normal
axiom. The display-proof function does that. Since it does not include
any special logic for induction it just prints out sentences like “...we use the
axiom ind to prove ...” and then a very long formula which is the induction
axiom as already explained.

Basically, induction is a tricky situation which is completely separated
from the rest of the code, and thus needs special attention on our behalf.
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Chapter 8

Evaluation

Like any other project, several problems appeared during the code develop-
ment. Several compromises were made until the final version of the code.
There are parts which are really stable and other parts where only partial
support is provided. This chapter examines several aspects of the present
implementation of the code. We also discuss what has changed since the
initial design, what still needs to be implemented, and what improvements
we would like to see in the Minlog system.

8.1 Contributions

The finished software module is a single Scheme source file. It can be loaded
into Minlog like any other Scheme code segment. Once the file is loaded, a
notice is shown mentioning the revision number for it.

The module functions which are expected to be run by the user are two.

1. The proof-to-latex function which triggers the export process.

2. The set-latex-filename! function which allows the user to change
the default name of the LATEX file.

The proof-to-latex function has a variable number of arguments. If no
argument is given the proof contained in (current-proof) will be exported
to a LATEX file with the default name. If one argument is given, it is assumed
to be a proof structure, which will be exported again to the default LATEX
file. If two arguments are provided, the first one is assumed to represent a
proof as before but the second one shows the name of the LATEX file.

The set-latex-filename! just sets the default name of the exported file
which will be used when not defined explicitly as described above. The initial
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default filename is “default.tex”. In all cases the name of the output file is
printed before the transformation process so the user knows where he/she
can find the resulting file. It is also possible to use a file path along with the
filename as an argument to set-latex-filename!. In this case both kind of
slashes1 are accepted regardless of the underlying platform.Table 8.1 outlines
the user interface of the module.

Command Description
(load ”texoutput4.scm”) Loads the module into Minlog
(proof-to-latex) Exports current-proof to default file
(proof-to-latex prf) Exports proof named ”prf” to default file
(proof-to-latex prf ”out.tex”) Exports proof named ”prf” to ”out.tex”
(set-latex-file! ”result.tex”) Changes default filename to ”result.tex”

Table 8.1: Module usage

8.2 Correctness

Unlike other projects, it is hard to define correctness in our case. There
is no “correct” way to express a proof. Different people will have different
opinions of how a proof should be exported. There is no doubt about that.
Additionally it is very difficult (if not impossible) to create a module capable
of expressing proofs that seem to be written by a human. Anyone who
reads a proof exported by the module can easily identify the hard-coded,
straightforward thinking of a machine. Especially for big proofs which have
non-trivial output the mechanical face of the English text is evident even by
non-technical people.

We consider the proof exported by the module to be correct when:

• The English text has correct syntax/grammar/spelling.

• The mathematical content is correct.

Whether the text looks natural to humans or not is a big topic on its own.
Therefore “correct” results are expected to contain text that is clearly auto-
matically generated by the machine.

Aside from this fact, the module is capable of expressing the most common
proofs that Minlog supports. Several advanced features of Minlog were not
implemented due to excessive complexity or time limitations.

1Dos-style or Unix-style
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In the unlike event where the module cannot handle the input given,
the appropriate function will exit gracefully mentioning the kind of input it
expected, and the actual input it received. This makes every problem easy to
detect and can greatly assist in the isolation and correction of the problem.

Finally it is clear that testing done during and after development can
only uncover the most obvious shortcomings. Rigorous testing can only be
achieved by the real users of the systems. Casual Minlog users would really
fall into the imperfections of the implementation. And only advanced Minlog
users would actually push the module to its limits when the attempt to
express really complex proofs. Therefore we cannot at this stage guarantee
a bug-free implementation.

One important point that we should emphasise is the fact that the mod-
ule is independent of the Minlog system. That is, it only gets information
from Minlog without changing anything. If for some unknown reason the tex
module crashes during the export process, the Minlog system will be unaf-
fected. The user does not lose anything. The module creates its own copy of
the proof structure and so the original one is untampered. This is another
advantage of having built the module with robustness and stability in mind.

8.3 Efficiency

Minlog is a relative small system (in comparison with the other proof check-
ers). So far performance does not seem to suffer regardless of platform. The
module is also very compact and the footprint of the code is minimal. After
all, Minlog does not have a graphical user interface. Expressing a proof is
almost instant and the processing time is not visible for the user.

It is worth noticing however, that unlike all other Minlog operations the
proof export process is expected to take double time to traverse the proof
tree. This is because a proof tree is parsed twice. The first time is during
stage 1 when the intermediate form is created and the second in stage 2
when the the final LATEX file is created from the intermediate form. Inspite
of being more compact, the intermediate form has exactly the same depth
and structure as the original proof structure. Also most major function calls
are not tail recursive so with really long proofs there is always the danger of
stack overflow. With modern systems however, this should not be a concern.

Another interesting issue is the look-ahead code. Currently pre-scanning
of the proof tree is performed in multiple introduction detection and in in-
duction extraction.

The multiple introduction algorithm really looks at the next step only.
Additionally this happens only during stage 1. In stage 2 multiple intro-
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duction is just another normal node in the proof tree. So it is not worth
examining the performance impact of this.

The induction algorithm is more aggressive since it scans 4 steps ahead in
the expression process. The number however is always the same (constant),
so the actual overhead is O(1) which is absorbed by the complexity needed
in order to traverse the proof tree itself. And as the multiple introduction
algorithm, induction detection happens only during stage 1 (that is the first
pass).

In conclusion the computational impact of the module is trivial compared
with the full Minlog system. But on modern workstations Minlog is already
fast enough, so that bothering at this stage with module efficiency becomes
unimportant. As stated in the specification, stability and robustness are the
primary goals.

8.4 Extensibility

This is an aspect where we would like to think that the module really shines.
We spent a great deal of effort to address all the minor details that lead to
extensible and portable code. As Minlog evolves so must the module. We
ought to make life easier for the next programmer who wishes to upgrade the
module next time.

This is accomplished by:

• The clear separation between stage 1 code (Minlog proof to intermedi-
ate code) and stage 2 (intermediate code to LATEX document.

• The object oriented structure of the module code.

We have already explained the theory behind data abstraction. We can
now demonstrate how it works in practice. We will start from the inter-
mediate form. For example the (simplified) code for and elimination (left)
is

(define (make-and-keep-left-node formula kernel)

(list

’and-keep-left

(convert-formula-to-latex-string formula)

kernel))

(define (get-result-from-and-keep-left-node node)

(list-ref node 1))
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(define (get-body-from-and-keep-left-node node)

(list-ref node 2))

Now we assume that the programmer wishes to change the tag symbol to
“conjunction-elim-left” and also reverse the internal components. The code
will become:

(define (make-and-keep-left-node formula kernel)

(list

’conjunction-elim-left

kernel

(convert-formula-to-latex-string formula)))

(define (get-result-from-and-keep-left-node node)

(list-ref node 2))

(define (get-body-from-and-keep-left-node node)

(list-ref node 1))

Next he/she wishes to add some preprocessing function for the kernel
part and some post-processing for the formula part. After the changes, the
code might look like:

(define (make-and-keep-left-node formula kernel)

(list

’conjunction-elim-left

(preprocess kernel)

(convert-formula-to-latex-string formula)))

(define (get-result-from-and-keep-left-node node)

(postprocess (list-ref node 2)))

(define (get-body-from-and-keep-left-node node)

(list-ref node 1))

Finally he/she decides to get rid of the simple list structure and use a
highly optimised custom data structure named “blackbox” (which behaves
like a hashtable).The final code would be:
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(define (make-and-keep-left-node formula kernel)

(begin

(blackbox-store (preprocess kernel) ’kernel)

(blackbox-store (convert-formula-to-latex-string formula) ’formula)))

(define (get-result-from-and-keep-left-node node)

(postprocess (blackbox-get ’formula)))

(define (get-body-from-and-keep-left-node node)

(blackbox-get ’kernel))

Even after all these modifications the rest of the module code will remain
unaffected as long as the name of the functions stay the same (as in our
case) and the accessor functions return the results expected by the rest of
the module. Also notice, that changes happen only locally. There is no
need to track others segments of the code, because they all use the accessor
functions and never the actual internal structure. The blackbox structure
can have on its own a complicated implementation which is simply of no
concern to rest of the code, since it never deals with the blackbox structure
directly. Everything happens via the accessor functions. In this simple case,
all this might seem an overkill, but we used it to demonstrate how easily we
can achieve scalability using multiple layers of software abstraction.

In a similar manner one can modify the backend which outputs LATEX files
and leave unchanged the front-end which obtains the proof structure from
Minlog. The code which outputs LATEX markup for all introduction follows:

(define (verbalise-all-intro all-intro-node proof-depth long?)

(let ((english1 "Let ")

(english2 " be arbitrary")

(what (get-var-from-all-intro-node all-intro-node))

(rest (get-rest-from-all-intro-node all-intro-node))

(english3 ", and then we have to show ")

(goal (get-kernel-string-from-all-intro-node all-intro-node)))

(string-append english1 what english2 english3 goal ". "

(verbalise-proof-aux rest proof-depth #f))))

If in the future we need to add XML export (the next section explains why
the module does not support XML at present) this can be easily modified to:

(define (verbalise-all-intro all-intro-node proof-depth long?)

(let ((root-start "<all-intro>")
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(root-end "</all-intro>")

(what (get-var-from-all-intro-node all-intro-node))

(rest (get-rest-from-all-intro-node all-intro-node))

(goal (get-kernel-string-from-all-intro-node all-intro-node)))

(string-append root-start "<var>" what "</var>" "<goal>" goal "</goal>"

"<rest>"

(verbalise-proof-aux rest proof-depth #f) "</rest>"

root-end)))

It is our belief that once someone understands the structure of the code,
it is easy to make any kind of change (radical or trivial) with minimum effort,
since there is a great deal of infrastructure code for modularisation and data
abstraction.

8.5 Project review

The LATEX module can easily handle most basic proofs. However most ad-
vanced constructs of Minlog (with the only exception being induction at the
moment) are not supported. These include:

• Full termrewriting support.

• Ex-elimination.

• Ex-introduction.

The main reason behind this fact, is that Minlog simply does not have
the necessary facilities for their expression. That is, Minlog does not ex-
port enough interfaces which will allow an external entity (in our case the
texoutput module) to retrieve all information needed for verbalisation. At
the moment Minlog is centered around the interactive proof process, rather
than the extraction of the steps applied after the proof is finished. This is
easily identified from the simplicity of the display-proof function which
ignores constructs like induction and ex-elimination/introduction and just
prints them as axioms along with the raw associated formulas. Currently
Minlog holds enough information on the correctness of proofs but not on
why they are correct.[HBC99]

On one hand the proof structure holds information which is irrelevant
to the expression of a proof, and that is why it needs preprocessing before
verbalisation (the intermediate form idea), but on the other hand it lacks
information which is relevant to the texoutput module. For example in
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the case of term-rewriting it would be convenient for the proof to hold the
formula before and after normalisation. Minlog holds only the result and it
assumes that one can derive the original formula from the goal that needs
to be proved. This however is not as simple as it sounds, especially for a
program. A human can look at 0 + 0 = 0 and know immediately that this
maps to TRUE. A program however sees this as another formula no “simpler”
than the others.

This issue is already known for other proof systems. Quoting from [HBC99]
where the Nu/PRL system is examined.

“However, as we have noted, there is information that is needed
for communication that is not stored in the proof tree, either
because it is part of the background mathematics knowledge as-
sumed in the system or because it was determined by the proof
agent in a manner that did not produce a suitable proof object.
This is the information that we must determine by appealing to
the theorem prover.”

The suggestion is that there should be a two-way communication between
the theorem prover and the expression module, so that queries can be made
from both sides. We already mentioned that Minlog stores induction/ex-
elim/ex-intro as special axioms and not as individual transformations. This
might be convenient technically from Minlog’s point of view, but it is a
big obstacle for the modules which are trying to export needed information.
The solution on which induction is based on (pattern matching) is not the
optimal one. Minlog should take this into account and export additional
information which is needed for an external module. Actually this is very
common for large software systems. Databases, Web servers, firewalls always
include some kind of framework which provides information about the state
of the system to the “external” world in a formatted and predetermined way.
Minlog is currently a “closed” system in this sense.

Minlog’s architecture is essentially flat. Every function is available from
everywhere and every subroutine can modify any internal structure of the
program. There is no notion of package or namespace inside Minlog. What
we really need is a Minlog system which is platform for proof checking rather
than a single proof checker program.

One could claim that instead of waiting, we should just define our own
interfaces and get all information we need ourselves. This would make the
module completely dependent on the Minlog system. Messing with the Min-
log internals in a deep level will beat the concept of a software module. We
think this topic should be clear from the specification section.
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The decision to follow the software module approach is not always a
restricting factor. For example with the pattern matching code for induction
we are able to express induction on lists (apart from natural numbers) since
Minlog handles induction in a more abstract form. This in effect allows the
module to handle examples like this shown in section A.8, a capability which
was not present in the previous version of the texoutput module.



Chapter 9

Future Considerations

This final chapter examines possible extensions to the module and explains
the lack of XML support in the current version.

9.1 Regarding XML

The module does not include any options for XML output. The only output
format at present is LATEX. This does not mean that we did not think that
XML was important. On the contrary, we thought that XML is so important
that it should either be implemented in the correct way or not at all.

Timing constraints played a limited role in the decision not to include
XML as a target format. The primary reason however, was that the “opti-
mal” way to incorporate XML in the project required effort that exceeded
a single MSc project and in addition should be attempted only after close
co-operation with the other proof Systems that exist in the field. We will
elaborate on this.

Following a brief research on XML and associated solutions and tools, it
became clear that the integration choices were actually two.

1. Using XML as a presentation medium (the easy way).

2. Using XML as the interchange medium (the hard/correct way).

The first solution would involve the output of an XML file readable by
existing generic tools. One of the first XML dialects was actually Math-ML
which was devised specifically for mathematical content. There are pre-
constructed Math-ML tools which allow for the manipulation, production
and presentation of Math-ML documents.

So a small modification of the texoutput module would be the ability to
export XML files which are Math-ML valid. This idea however, was soon
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abandoned after witnessing the maturity of the XML platform in general.
XML is no doubt a revolutionary idea however, the technology itself is rather
new. The tools available are rather primitive and with the exception of XML
parsers, the rest of the software tools are limited. In fact some of the XML
tools prefer to build temporary on already established solutions in order to
handle the output process. For example there are tools which convert XML
files to PDF, passing from LATEX first. That is, the XML converter uses
stylesheets to convert the XML file to LATEX source, and the rest of the
conversion is handled by the native LATEX tool-chain which has quality PDF
export. Naturally this would seem pointless in our case since we can already
export directly LATEX files.

Of course there are tools which will convert XML to PDF files in one
step, but they cannot match the LATEX tool-chain which is well established
and very mature. So in the end there is not any real advantage for using
XML as a presentation medium.

It is important to note that this usage of XML is a side effect of the tech-
nology. The primary reason behind the invention of XML was information
(document) exchange and the support of architecture independent Web ser-
vices. Web services powered by XML can be produced and consumed by any
machine on the network regardless of the underlying platform technology. So
instead of using Math-ML (which just deals with mathematical content) for
presentation of Minlog proofs, we should use XML for the storage of Minlog
proofs[STL00].

Basically this means that we need to define a special Minlog XML Schema
(or DTD) which will describe the structure of an XML document in Minlog
terms, and not in plain mathematical terms. The result would be an XML
document with a root element of <proof> and special elements/attributes
describing the individual proof manipulation steps (e.g. all elimination, im-
plication introduction e.t.c). This is a very difficult undertaking which can
prove a disaster if taken lightly. This solution depends on two important
concepts:

1. Availability of assorted tools.

2. A well chosen/defined XML Schema.

If we define our own XML Schema for Minlog we are essentially creating
a new XML dialect which needs the full software stack in order to be useful.
That is:

• XML export (this Minlog module).
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• XML import (another Minlog module).

• XML parser/validator.

• XML converter for this Schema/DTD.

• XML stylesheets for various formats.

• Native or generic viewers for the final result.

Of these the only thing available are the XML parsers. We could make
then the module to export an XML file following our Minlog specific Schema,
but this file would be completely useless without the rest of the software tools.
We could verify that this XML file was actually valid, but nothing else. The
stylesheets are those that really allow us to visualise and understand an XML
file. Another Minlog module needs to be implemented too, in order to read
XML files and import the proof described in the Minlog system.

The definition of the XML Schema is also very important. The worst
thing that can happen here is the definition of individual XML Schemas from
each Proof system (e.g. Isabelle, Coq e.t.c.) in complete isolation from each
other. This would beat the whole concept of XML for information exchange
since now one would have to convert files between the different XML dialects.
In fact the choice of the XML Schema should be a common decision between
the involving parties, in order to have in the end a unified way to represent
proofs. This would potentially allow for the exchange of proofs between
different systems. We do not claim that this can happen easily. At least in
the beginning, only the intersection of available features should be formalised
and as systems mature the XML Schema could be refined when needed.

It should be clear now, that choosing quickly an XML Schema just to
“advertise” that the module supports XML export, would be completely
naive and premature. Technically the modifications that need to be done
in the module code for XML export, are not major. In fact, with the clear
separation of the two stages in the code, exporting XML elements from the
intermediate proof form is trivial programmatically. But the problem here is
not the programmatical effort, but rather a common agreement between the
members of the Logic field in Computer Science.

9.2 Possible extensions

The tex module is no exception to the rule. Although the bulk of the needed
functionality is implemented, there is always some room for improvements.
What is needed first is quality assurance for the current code. Rigorous
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testing from advanced Minlog users with complex proofs is expected to reveal
a lot of limitations of the current implementation. It is also possible that
expert Scheme programmers can identify many common problems inside the
code which need corrections.

What follows next is probably the inclusion of all advanced Minlog fea-
tures which did not make it into the current implementation. Some of the
advanced Minlog users will almost certainly find the current implementation
limited, and lack of needed features will be detrimental for them.

Finally the crown jewel of Minlog could become the ability to export XML
proofs readable by other interactive proof systems too. With an additional
XML import module, the Minlog system will become a robust and extensible
tool among the research community.
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Appendix A

Example sessions

This chapter includes a small collection of various examples that demon-
strate the status of the finished module. In simple cases we make use of the
automatic proof search feature, while in more complex ones we list explic-
itly the needed steps.These are the same examples that were used during
development of the module, so the reader is encouraged to try his/her own
ideas.

For each example we include:

• The Minlog commands for its creation.

• The output of the display-proof function.

• The output of the display-proof-expression function. That is, the
λ− form of the proof.

• The intermediate list form.

• The finished (rendered) LATEX presentation.

A.1 General example

This example shows most concepts mentioned in the text. Assumption group-
ing, assumptions numbering, subproofs, mixed reasoning e.t.c

The Minlog commands (included in all1.scm) are:

(add-pvar-name "A" "B" (make-arity (py "alpha")))

(add-var-name "x" (py "alpha"))

(set-goal (pf "(all x. A x -> B x) -> all x A(x) -> all x B(x)"))

(search)
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The output of the display-proof function is:

> (dp)

; .....all x.A x -> B x by assumption u13

; .....x

; ....A x -> B x by all elim

; .....all x A x by assumption u14

; .....x

; ....A x by all elim

; ...B x by imp elim

; ..all x B x by all intro

; .all x A x -> all x B x by imp intro u14

; (all x.A x -> B x) -> all x A x -> all x B x by imp intro u13

The λ− form of the proof is:

> (dpe)

(lambda (u13) (lambda (u14) (lambda (x) ((u13 x) (u14 x)))))

The intermediate list form is:

> (express-proof (input-proof))

(mult-intro

"$(\\forall x.\\,A x \\to B x) \\to \\forall x\\, A x \\to \\forall x\\, B

x$"

((inline-all-intro "$B x$" (x))

(inline-imp-intro

"$\\forall x\\, B x$"

"$\\forall x\\, A x$"

u14)

(inline-imp-intro

"$\\forall x\\, A x \\to \\forall x\\, B x$"

"$\\forall x.\\,A x \\to B x$"

u13))

(imp-elim

"$B x$"

(all-elim

"$A x \\to B x$"

(avar "$\\forall x.\\,A x \\to B x$" u13)

"x")

"$A x \\to B x$"

(all-elim "$A x$" (avar "$\\forall x\\, A x$" u14) "x")

"$A x$"))
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And the LATEX rendering is:
Formula to be proved: (∀x. Ax → Bx) → ∀x Ax → ∀x Bx
Proof: We can assume ∀x. Ax → Bx[1], ∀x Ax[2], x. Then we have to

show Bx. We can derive this from Ax and Ax → Bx.

•0 We instantiate assumption [2] with x in order to obtain Ax.

•0 We instantiate assumption [1] with x in order to obtain Ax → Bx.

A.2 The main example of the text

This example is examined in detail by the document text. Its proof tree is
also included in the text showing backward and forward reasoning.

The Minlog commands (included in example1.scm) are:

(add-var-name "f" (py "alpha=>alpha"))

(add-predconst-name "A" "B" (make-arity (py "alpha")))

(add-var-name "x" "y" "z" (py "alpha"))

(set-goal (pf "all f . ( (all x. A(f(x)) -> B(x)) ->

all y A(y) -> all z B(z))"))

(search)

The output of the display-proof function is:

> (dp)

; ......all x.A(f x) -> B x by assumption u13

; ......z

; .....A(f z) -> B z by all elim

; ......all y A y by assumption u14

; ......f z

; .....A(f z) by all elim

; ....B z by imp elim

; ...all z B z by all intro

; ..all y A y -> all z B z by imp intro u14

; .(all x.A(f x) -> B x) -> all y A y -> all z B z by imp intro u13

; all f.(all x.A(f x) -> B x) -> all y A y -> all z B z by all intro

The λ− form of the proof is:

> (dpe)

(lambda (f)

(lambda (u13)

(lambda (u14) (lambda (z) ((u13 z) (u14 (f z)))))))



APPENDIX A. EXAMPLE SESSIONS 87

The intermediate list form is:

> (express-proof (input-proof))

(mult-intro

"$\\forall f.\\,(\\forall x.\\,A(f x) \\to B x) \\to \\forall y\\, A y \\to

\\forall z\\, B z$"

((inline-all-intro "$B z$" (z))

(inline-imp-intro

"$\\forall z\\, B z$"

"$\\forall y\\, A y$"

u14)

(inline-imp-intro

"$\\forall y\\, A y \\to \\forall z\\, B z$"

"$\\forall x.\\,A(f x) \\to B x$"

u13)

(inline-all-intro

"$(\\forall x.\\,A(f x) \\to B x) \\to \\forall y\\, A y \\to \\forall

z\\, B z$"

(f)))

(imp-elim

"$B z$"

(all-elim

"$A(f z) \\to B z$"

(avar "$\\forall x.\\,A(f x) \\to B x$" u13)

"z")

"$A(f z) \\to B z$"

(all-elim "$A(f z)$" (avar "$\\forall y\\, A y$" u14) "f z")

"$A(f z)$"))

And the LATEX rendering is:
Formula to be proved: ∀f. (∀x. A(fx) → Bx) → ∀y Ay → ∀z Bz
Proof: We can assume f , ∀x. A(fx) → Bx[1], ∀y Ay[2], z. Then we have

to show Bz. We can derive this from A(fz) and A(fz) → Bz.

•0 We instantiate assumption [2] with fz in order to obtain A(fz).

•0 We instantiate assumption [1] with z in order to obtain A(fz) → Bz.

A.3 Distribution Law

The Minlog commands (included in distr.scm) are:
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(add-predconst-name "A" "B" "C" (make-arity))

(define distr (pf "(A -> B -> C) -> (A -> B) -> A -> C"))

(set-goal distr)

(search)

The output of the display-proof function is:

> (dp)

; .....A -> B -> C by assumption u13

; .....A by assumption u15

; ....B -> C by imp elim

; .....A -> B by assumption u14

; .....A by assumption u15

; ....B by imp elim

; ...C by imp elim

; ..A -> C by imp intro u15

; .(A -> B) -> A -> C by imp intro u14

; (A -> B -> C) -> (A -> B) -> A -> C by imp intro u13

The λ− form of the proof is:

> (dpe)

(lambda (u13)

(lambda (u14) (lambda (u15) ((u13 u15) (u14 u15)))))

The intermediate list form is:

> (express-proof (input-proof))

(mult-intro

"$(A \\to B \\to C) \\to (A \\to B) \\to A \\to C$"

((inline-imp-intro "$C$" "$A$" u15)

(inline-imp-intro "$A \\to C$" "$A \\to B$" u14)

(inline-imp-intro

"$(A \\to B) \\to A \\to C$"

"$A \\to B \\to C$"

u13))

(imp-elim

"$C$"

(imp-elim

"$B \\to C$"

(avar "$A \\to B \\to C$" u13)

"$A \\to B \\to C$"

(avar "$A$" u15)
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"$A$")

"$B \\to C$"

(imp-elim

"$B$"

(avar "$A \\to B$" u14)

"$A \\to B$"

(avar "$A$" u15)

"$A$")

"$B$"))

And the LATEX rendering is:
Formula to be proved: (A → B → C) → (A → B) → A → C
Proof: We can assume A → B → C[1], A → B[2], A[3]. Then we have to

show C. We can derive this from B and B → C.

•0 We can easily derive B from assumption [2] and assumption [3].

•0 We can easily derive B → C from assumption [1] and assumption [3].

A.4 Multiple all elimination

This example demonstrates the all elimination grouping since it contains 4
all elimination in a row.

The Minlog commands (included in fourall.scm) are:

(add-pvar-name "A" "B" (make-arity (py "alpha")))

(add-var-name "x" (py "alpha"))

(add-var-name "y" (py "alpha"))

(add-var-name "z" (py "alpha"))

(add-var-name "w" (py "alpha"))

(set-goal (pf "(all x,y,z,w (A(x) & B(x)) -> all x A(x))"))

(search)

The output of the display-proof function is:

> (dp)

; .......all x,y,z,w.A x & B x by assumption u13

; .......x

; ......all y,z,w.A x & B x by all elim

; ......y

; .....all z,w.A x & B x by all elim
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; .....z

; ....all w.A x & B x by all elim

; ....w

; ...A x & B x by all elim

; ..A x by and elim left

; .all x A x by all intro

; (all x,y,z,w.A x & B x) -> all x A x by imp intro u13

The λ− form of the proof is:

> (dpe)

(lambda (u13) (lambda (x) (car ((((u13 x) y) z) w))))

The intermediate list form is:

> (express-proof (input-proof))

(mult-intro

"$(\\forall x,y,z,w.\\,A x \\land B x) \\to \\forall x\\, A x$"

((inline-all-intro "$A x$" (x))

(inline-imp-intro

"$\\forall x\\, A x$"

"$\\forall x,y,z,w.\\,A x \\land B x$"

u13))

(and-keep-left

"$A x$"

(all-elim

"$A x \\land B x$"

(all-elim

"$\\forall w.\\,A x \\land B x$"

(all-elim

"$\\forall z,w.\\,A x \\land B x$"

(all-elim

"$\\forall y,z,w.\\,A x \\land B x$"

(avar "$\\forall x,y,z,w.\\,A x \\land B x$" u13)

"x")

"y")

"z")

"w")))

And the LATEX rendering is:
Formula to be proved: (∀x, y, z, w. Ax ∧Bx) → ∀x Ax
Proof: We can assume ∀x, y, z, w. Ax ∧ Bx[1], x. Then we have to show

Ax. We instantiate assumption [1] with x, y, z, w in order to obtain Ax∧Bx.
Keeping only the left part of this we get Ax.
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A.5 Nested subproofs

This example shows two levels of subproofs and also conjunction introduction
and elimination.

The Minlog commands (included in and4.scm) are:

(add-predconst-name "Q" "R" "S" (make-arity))

(set-goal (pf "(Q & R & S) -> (S & R & Q)"))

(search)

The output of the display-proof function is:

> (dp)

; ....Q & R & S by assumption u13

; ...S by and elim right

; .....Q & R & S by assumption u13

; ....Q & R by and elim left

; ...R by and elim right

; ..S & R by and intro

; ....Q & R & S by assumption u13

; ...Q & R by and elim left

; ..Q by and elim left

; .S & R & Q by and intro

; Q & R & S -> S & R & Q by imp intro u13

The λ− form of the proof is:

> (dpe)

(lambda (u13)

(cons (cons (cdr u13) (cdr (car u13))) (car (car u13))))

The intermediate list form is:

> (express-proof (input-proof))

(imp-intro

"$Q \\land R \\land S \\to S \\land R \\land Q$"

u13

"$Q \\land R \\land S$"

"$S \\land R \\land Q$"

(and-intro

"$S \\land R \\land Q$"

(and-intro

"$S \\land R$"
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(and-keep-right "$S$" (avar "$Q \\land R \\land S$" u13))

(and-keep-right

"$R$"

(and-keep-left

"$Q \\land R$"

(avar "$Q \\land R \\land S$" u13))))

(and-keep-left

"$Q$"

(and-keep-left

"$Q \\land R$"

(avar "$Q \\land R \\land S$" u13)))))

And the LATEX rendering is:
Formula to be proved: Q ∧R ∧ S → S ∧R ∧Q
Proof: Let’s assume Q ∧ R ∧ S[1].We now need to prove S ∧ R ∧Q. We

prove both parts of this.

•0 We prove both parts of S ∧R.

•1 Keeping only the right part of assumption [1] we get S.

•1 Keeping only the left part of assumption [1] we get Q∧R. Keeping
only the right part of this we get R.

•0 Keeping only the left part of assumption [1] we get Q ∧ R. Keeping
only the left part of this we get Q.

A.6 The Peirce formula

This example shows the additional printout of global assumptions which are
used in the proof.

The Minlog commands (included in peirce.scm) are:

(add-predconst-name "A" "B" (make-arity))

(define peirce-formula (pf "((A -> B) -> A) -> A"))

(set-goal peirce-formula)

(assume 1)

(use "Stab-Log")

(assume 2)

(use 2)

(use 1)

(assume 3)

(use "Efq-Log")
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(use 2)

(use 3)

The output of the display-proof function is:

> (dp)

; ..((A -> bot) -> bot) -> A by global assumption Stab-Log

; ....A -> bot by assumption u15

; .....(A -> B) -> A by assumption u13

; .......bot -> B by global assumption Efq-Log

; ........A -> bot by assumption u15

; ........A by assumption u18

; .......bot by imp elim

; ......B by imp elim

; .....A -> B by imp intro u18

; ....A by imp elim

; ...bot by imp elim

; ..(A -> bot) -> bot by imp intro u15

; .A by imp elim

; ((A -> B) -> A) -> A by imp intro u13

The λ− form of the proof is:

> (dpe)

(lambda (u13)

(|Stab-Log|

(lambda (u15)

(u15 (u13 (lambda (u18) (|Efq-Log| (u15 u18))))))))

The intermediate list form is:

> (express-proof (input-proof))

(imp-intro

"$((A \\to B) \\to A) \\to A$"

u13

"$(A \\to B) \\to A$"

"$A$"

(imp-elim

"$A$"

(aconst

"$((A \\to \\bot) \\to \\bot) \\to A$"

"Stab-Log"

"global-assumption")
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"$((A \\to \\bot) \\to \\bot) \\to A$"

(imp-intro

"$(A \\to \\bot) \\to \\bot$"

u15

"$A \\to \\bot$"

"$\\bot$"

(imp-elim

"$\\bot$"

(avar "$A \\to \\bot$" u15)

"$A \\to \\bot$"

(imp-elim

"$A$"

(avar "$(A \\to B) \\to A$" u13)

"$(A \\to B) \\to A$"

(imp-intro

"$A \\to B$"

u18

"$A$"

"$B$"

(imp-elim

"$B$"

(aconst "$\\bot \\to B$" "Efq-Log" "global-assumption")

"$\\bot \\to B$"

(imp-elim

"$\\bot$"

(avar "$A \\to \\bot$" u15)

"$A \\to \\bot$"

(avar "$A$" u18)

"$A$")

"$\\bot$"))

"$A \\to B$")

"$A$"))

"$(A \\to \\bot) \\to \\bot$"))

And the LATEX rendering is:
Formula to be proved: ((A → B) → A) → A
Proof: Let’s assume (A → B) → A[1].We now need to prove A. We can

derive this from global-assumption Stab-Log. It remains to show (A → ⊥) →
⊥. Let’s assume A → ⊥[2].We now need to prove ⊥. We can derive this from
assumption [2]. It remains to show A. We can derive this from assumption
[1]. It remains to show A → B. Let’s assume A[3].We now need to prove B.
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We can derive this from global-assumption Efq-Log. It remains to show ⊥.
We can easily derive this from assumption [2] and assumption [3].

Global assumption(s) used:
Efq-Log: ⊥ → B
Stab-Log: ((A → ⊥) → ⊥) → A

A.7 Simple induction on natural numbers.

A simple example of induction. Term rewriting exists, but only for the base
case.

The Minlog commands (included in ind1.scm) are:

(mload "../lib/nat.scm")

(set-goal (pf "all n,m.n + m = m + n"))

(assume "n")

(ind)

(normalize-goal) ;abbreviation: ng

(use "Truth-Axiom")

(assume "m" "IH")

(ng)

(use "IH")

The output of the display-proof function is:

> (dp)

; ....allnc n.n+0=0+n -> (all n27.n+n27=n27+n -> n+Succ n27=Succ n27+n) -> all

n26 n+n26=n26+n by axiom Ind

; ....n

; ...n+0=0+n -> (all n27.n+n27=n27+n -> n+Succ n27=Succ n27+n) -> all n26

n+n26=n26+n by allnc elim

; ...T by axiom Truth-Axiom

; ..(all n27.n+n27=n27+n -> n+Succ n27=Succ n27+n) -> all n26 n+n26=n26+n by

imp elim

; ....n+m=m+n by assumption IH15

; ...n+m=m+n -> n+m=m+n by imp intro IH15

; ..all m.n+m=m+n -> n+m=m+n by all intro

; .all n26 n+n26=n26+n by imp elim

; all n,n26 n+n26=n26+n by all intro

The λ− form of the proof is:
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> (dpe)

(lambda (n)

(((|Ind| n) |Truth-Axiom|)

(lambda (m) (lambda (|IH15|) |IH15|))))

The intermediate list form is:

> (express-proof (input-proof))

(ind "$\\forall m\\, n+m=m+n$"

(aconst "$T$" "Truth-Axiom" "axiom")

"$n+0=0+n$"

"$T$"

#t

(mult-intro

"$\\forall m.\\,n+m=m+n \\to n+m=m+n$"

((inline-imp-intro "$n+m=m+n$" "$n+m=m+n$" |IH15|)

(inline-all-intro "$n+m=m+n \\to n+m=m+n$" (m)))

(avar "$n+m=m+n$" |IH15|))

"$\\forall n27.\\,n+n27=n27+n \\to n+Succ n27=Succ n27+n$"

"$\\forall m.\\,n+m=m+n \\to n+m=m+n$"

(aconst

"$\\forall^{nc} n.\\,n+0=0+n \\to (\\forall n27.\\,n+n27=n27+n \\to

n+Succ n27=Succ n27+n) \\to \\forall n26\\, n+n26=n26+n$"

"Ind"

"axiom")

"$(Pvar nat)^4 0 \\to (\\forall n27.\\,(Pvar nat)^4 n27 \\to (Pvar

nat)^4(Succ n27)) \\to \\forall n26\\, (Pvar nat)^4 n26$"

"$n+0=0+n \\to (\\forall n27.\\,n+n27=n27+n \\to n+Succ n27=Succ n27+n)

\\to \\forall n26\\, n+n26=n26+n$")

And the LATEX rendering is:
Formula to be proved: ∀m n + m = m + n
Proof: To prove ∀m n + m = m + n we will use induction.

Base case: n + 0 = 0 + n.
We can prove the base case using axiom Truth-Axiom where n + 0 = 0 + n
↘∗↙ T .

Step: ∀n27. n + n27 = n27 + n → n + Succn27 = Succn27 + n.
We can assume m, n+m = m+n[1]. Then we have to show n+m = m+n.
We can use assumption [1].
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A.8 Induction on lists

This example shows induction on lists. It proves that a list and its reverse
have the same length. (Example by Dr.Monika Seisenberger)

The Minlog commands (included in lists.scm) are:

(mload "../lib/nat.scm")

(mload "../lib/list.scm")

(add-var-name "a" "b" (py "alpha"))

(add-var-name "s" "w" (py "list alpha"))

(add-program-constant "ListRev"

(py "list alpha => list alpha") 1)

(add-token

"Rev" ’prefix-op

(lambda (x) (make-term-in-app-form

(make-term-in-const-form

(let* ((const (pconst-name-to-pconst "ListRev"))

(tvars (const-to-tvars const))

(listtype (term-to-type x))

(type (car (alg-form-to-types listtype)))

(subst (make-substitution tvars (list type))))

(const-substitute const subst #f)))

x)))

(add-display

(py "list alpha")

(lambda (x)

(if (term-in-app-form? x)

(let ((op (term-in-app-form-to-op x)))

(if (and (term-in-const-form? op)

(string=? "ListRev"

(const-to-name (term-in-const-form-to-const

op))))

(list ’prefix-op "Rev"

(term-to-token-tree (term-in-app-form-to-arg x)))

#f))

#f)))

(add-computation-rule (pt "Rev (Nil alpha)") (pt "(Nil alpha)"))

(add-computation-rule (pt "Rev (a::w)") (pt "(Rev w) :+: (a:)"))
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(set-goal (pf "all s. Lh s = Lh (Rev s)"))

(ind)

(ng)

(use "Truth-Axiom")

(assume "a" "s" "ih")

(ng)

(use "ih")

The output of the display-proof function is:

> (dp)

; ..Lh(Nil alpha)=Lh Rev(Nil alpha) -> (all a35,s36.Lh s36=Lh Rev s36 ->

Lh(a35::s36)=Lh Rev(a35::s36)) -> all s37 Lh s37=Lh Rev s37 by axiom Ind

; ..T by axiom Truth-Axiom

; .(all a35,s36.Lh s36=Lh Rev s36 -> Lh(a35::s36)=Lh Rev(a35::s36)) -> all s37

Lh s37=Lh Rev s37 by imp elim

; ....Lh s=Lh Rev s by assumption ih15

; ...Lh s=Lh Rev s -> Lh s=Lh Rev s by imp intro ih15

; ..all s.Lh s=Lh Rev s -> Lh s=Lh Rev s by all intro

; .all a,s.Lh s=Lh Rev s -> Lh s=Lh Rev s by all intro

; all s37 Lh s37=Lh Rev s37 by imp elim

The λ− form of the proof is:

> (dpe)

((|Ind| |Truth-Axiom|)

(lambda (a) (lambda (s) (lambda (ih15) ih15))))

The intermediate list form is:

> (express-proof (input-proof))

(ind "$\\forall s\\, Lh s=Lh Rev s$"

(aconst "$T$" "Truth-Axiom" "axiom")

"$Lh(Nil alpha)=Lh Rev(Nil alpha)$"

"$T$"

#t

(mult-intro

"$\\forall a,s.\\,Lh s=Lh Rev s \\to Lh s=Lh Rev s$"

((inline-imp-intro "$Lh s=Lh Rev s$" "$Lh s=Lh Rev s$" ih15)

(inline-all-intro "$Lh s=Lh Rev s \\to Lh s=Lh Rev s$" (s))

(inline-all-intro
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"$\\forall s.\\,Lh s=Lh Rev s \\to Lh s=Lh Rev s$"

(a)))

(avar "$Lh s=Lh Rev s$" ih15))

"$\\forall a38,s39.\\,Lh s39=Lh Rev s39 \\to Lh(a38::s39)=Lh

Rev(a38::s39)$"

"$\\forall a,s.\\,Lh s=Lh Rev s \\to Lh s=Lh Rev s$"

(aconst

"$Lh(Nil alpha)=Lh Rev(Nil alpha) \\to (\\forall a35,s36.\\,Lh s36=Lh Rev s36 \\to Lh(a35::s36)=Lh Rev(a35::s36)) \\to \\forall s37\\, Lh s37=Lh Rev s37$"

"Ind"

"axiom")

"$(Pvar list alpha4)^4(Nil alpha4) \\to (\\forall (alpha4)_34,(list

alpha4)_33.\\,(Pvar list alpha4)^4(list alpha4)_33 \\to (Pvar list

alpha4)^4((alpha4)_34::(list alpha4)_33)) \\to \\forall (list alpha4)_32\\,

(Pvar list alpha4)^4(list alpha4)_32$"

"$Lh(Nil alpha)=Lh Rev(Nil alpha) \\to (\\forall a38,s39.\\,Lh s39=Lh Rev

s39 \\to Lh(a38::s39)=Lh Rev(a38::s39)) \\to \\forall s40\\, Lh s40=Lh Rev

s40$")

And the LATEX rendering is:
Formula to be proved: ∀s Lhs = LhRevs
Proof: To prove ∀s Lhs = LhRevs we will use induction.

Base case: Lh(Nilalpha) = LhRev(Nilalpha).
We can prove the base case using axiom Truth-Axiom where Lh(Nilalpha) =
LhRev(Nilalpha) ↘∗↙ T .

Step: ∀a41, s42. Lhs42 = LhRevs42 → Lh(a41 :: s42) = LhRev(a41 ::
s42).
We can assume a, s, Lhs = LhRevs[1]. Then we have to show Lhs =
LhRevs. We can use assumption [1].
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